where in the last step we have used $1 / i=-i$ and rearranged the terms. Recognizing the partial derivatives of v and u with respect to y we obtain

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)-i \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) \tag{2.5.5}
\end{equation*}
$$

which is this time an expression of the derivative of f in terms of the partial derivatives with respect to y of u and v. Equating real and imaginary parts in (2.5.3) and (2.5.5), we deduce the following equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{2.5.6}
\end{equation*}
$$

These are called the Cauchy-Riemann equations. They first appeared in 1821 in the early work of Cauchy on integrals of complex-valued functions. Their connection to the existence of the complex derivative, appeared in 1851 in the doctoral dissertation of the German mathematician Bernhard Riemann (1826-1866).

Theorem 2.5.1. (Cauchy-Riemann Equations) Let U be an open subset of \mathbb{R}^{2} and let u, v be real-valued functions defined on U. Then the complex-valued function $f(x+i y)=u(x, y)+i v(x, y)$ is analytic on U if and only if u, v are differentiable functions on U and satisfy the Cauchy-Riemann equations

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} \tag{2.5.7}
\end{equation*}
$$

for all points in U. If this is the case, then for all $(x, y) \in U$ we have

$$
\begin{equation*}
f^{\prime}(x+i y)=u_{x}(x, y)+i v_{x}(x, y) \quad \text { or } \quad f^{\prime}(x+i y)=v_{y}(x, y)-i u_{y}(x, y) \tag{2.5.8}
\end{equation*}
$$

Proof. Let us use the notation $z=x+i y$ for a general point in U and $z_{0}=x_{0}+i y_{0}$ for a fixed point in U, where x, y, x_{0}, y_{0} are real numbers. In view of Proposition 2.3.10, if the function f is analytic, we have

$$
\begin{equation*}
f(z)-f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\varepsilon(z)\left(z-z_{0}\right) \tag{2.5.9}
\end{equation*}
$$

where $\varepsilon(z)$ ends to zero as $z \rightarrow z_{0}$. Setting $f^{\prime}\left(z_{0}\right)=A+i B$, where A, B are real, and splitting up real and imaginary parts in (2.5.9) we obtain

$$
\begin{aligned}
u(x, y)-u\left(x_{0}, y_{0}\right) & =A\left(x-x_{0}\right)-B\left(y-y_{0}\right)+\varepsilon_{1}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right| \\
v(x, y)-v\left(x_{0}, y_{0}\right) & =B\left(x-x_{0}\right)+A\left(y-y_{0}\right)+\varepsilon_{2}(x, y)\left|\left(x-x_{0}, y-y_{0}\right)\right|,
\end{aligned}
$$

where

$$
\begin{aligned}
& \varepsilon_{1}(x, y)=\operatorname{Re}\left[\varepsilon(x+i y) \frac{x-x_{0}+i\left(y-y_{0}\right)}{\left|\left(x-x_{0}, y-y_{0}\right)\right|}\right] \\
& \varepsilon_{2}(x, y)=\operatorname{Im}\left[\varepsilon(x+i y) \frac{x-x_{0}+i\left(y-y_{0}\right)}{\left|\left(x-x_{0}, y-y_{0}\right)\right|}\right]
\end{aligned}
$$

