

Fig. 2.14 In the reverse chain rule we suppose that g is continuous and that $h=$ $f \circ g$ is analytic and we conclude that g is analytic.

Theorem 2.3.12. (Reverse Chain Rule) Suppose that g is a continuous function on a region Ω and f is an analytic function on a region U that contains $g[\Omega]$. Suppose that $h=f \circ g$ is analytic on Ω and that $f^{\prime}(g(z)) \neq 0$ for all z in Ω. Then g is analytic on Ω and

$$
\begin{equation*}
g^{\prime}(z)=\frac{h^{\prime}(z)}{f^{\prime}(g(z))}, \quad z \in \Omega \tag{2.3.18}
\end{equation*}
$$

Proof. Let z_{0} be in Ω. We know that $h(z)=f(g(z))$ is analytic at $z=z_{0}, f$ is analytic at $g\left(z_{0}\right)$ with $f^{\prime}\left(g\left(z_{0}\right)\right) \neq 0$, and g is continuous at z_{0}. We want to show that

$$
\begin{equation*}
g^{\prime}\left(z_{0}\right)=\frac{h^{\prime}\left(z_{0}\right)}{f^{\prime}\left(g\left(z_{0}\right)\right)} . \tag{2.3.19}
\end{equation*}
$$

Applying Proposition 2.3.10 to $h(z)=f(g(z))$, we write

$$
\begin{equation*}
f(g(z))=f\left(g\left(z_{0}\right)\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\varepsilon(z)\left(z-z_{0}\right), \quad \varepsilon(z) \rightarrow 0 \text { as } z \rightarrow z_{0} \tag{2.3.20}
\end{equation*}
$$

Applying Proposition 2.3.10 to f at $g\left(z_{0}\right)$, we have

$$
\begin{equation*}
f(g(z))=f\left(g\left(z_{0}\right)\right)+f^{\prime}\left(g\left(z_{0}\right)\right)\left(g(z)-g\left(z_{0}\right)\right)+\eta(g(z))\left(g(z)-g\left(z_{0}\right)\right) \tag{2.3.21}
\end{equation*}
$$

where $\eta(g(z)) \rightarrow 0$ as $g(z) \rightarrow g\left(z_{0}\right)$ or, equivalently, as $z \rightarrow z_{0}$ by continuity of g at z_{0}. Subtract (2.3.21) from (2.3.20) and rearrange the terms to get

$$
\begin{equation*}
\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=\frac{h^{\prime}\left(z_{0}\right)+\varepsilon(z)}{f^{\prime}\left(g\left(z_{0}\right)\right)+\eta(g(z))} . \tag{2.3.22}
\end{equation*}
$$

As $z \rightarrow z_{0}, \varepsilon(z) \rightarrow 0$ and $\eta(g(z)) \rightarrow 0$, implying (2.3.19). Notice that the denominator in (2.3.22) does not vanish for z sufficiently close to z_{0}.

