Since the limit along C is not equal to the limit along C^{\prime}, we conclude that the limit in (2.3.9) does not exist. Hence the function \bar{z} is not analytic at z_{0}. Since z_{0} is arbitrary, it follows that \bar{z} is nowhere analytic.
(b) We follow the approach in (a) and use the same directions along C and C^{\prime}. For z on $C, \operatorname{Re} z-\operatorname{Re} z_{0}=x_{0}+t-x_{0}=t$, and, for z on $C^{\prime}, \operatorname{Re} z-\operatorname{Re} z_{0}=x_{0}-x_{0}=0$.

Thus we write

$$
\lim _{\substack{z \rightarrow z_{0} \\ z \text { on } C}} \frac{\operatorname{Re} z-\operatorname{Re} z_{0}}{z-z_{0}}=\lim _{t \rightarrow 0} \frac{t}{t}=1
$$

and

$$
\lim _{\substack{z \rightarrow z_{0} \\ z \text { on } C^{\prime}}} \frac{\operatorname{Re} z-\operatorname{Re} z_{0}}{z-z_{0}}=\lim _{t \rightarrow 0} \frac{0}{i t}=0
$$

So the derivative of $\operatorname{Re} z$ does not exist at z_{0}. Since z_{0} is arbitrary, we conclude that $\operatorname{Re} z$ is nowhere analytic.

Fig. 2.13 For $z \in C$ we have $z-z_{0}=$ t while for $z \in C^{\prime}, z-z_{0}=i t$.

There is also a quick proof of (b) based on the result of (a) and the identity $\bar{z}=2 \operatorname{Re} z-z$. In fact, if $\operatorname{Re} z$ has a derivative at z_{0}, then by the properties of the derivative it would follow that \bar{z} has a derivative at z_{0}, which contradicts (a).

Suppose that $f(z)$ has a complex derivative at a point z_{0} and let

$$
\begin{equation*}
\varepsilon(z)=\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right) \tag{2.3.10}
\end{equation*}
$$

Then $\varepsilon(z) \rightarrow 0$ as $z \rightarrow z_{0}$, because the difference quotient in (2.3.10) tends to $f^{\prime}\left(z_{0}\right)$. Solving for $f(z)$ in (2.3.10) we obtain

$$
\begin{equation*}
f(z)=\overbrace{f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}^{\text {linear function of } z}+\varepsilon(z)\left(z-z_{0}\right) . \tag{2.3.11}
\end{equation*}
$$

This expression shows that, near a point where f is analytichas a complex derivative, $f(z)$ is approximately a linear function. The converse is also true.

Proposition 2.3.10. Let U be an open subset of \mathbb{C}. A function f on U has a complex derivative at a point $z_{0} \in U$ if and only if there is a complex number A and a function $\varepsilon(z)$ such that

$$
\begin{equation*}
f(z)=f\left(z_{0}\right)+A\left(z-z_{0}\right)+\varepsilon(z)\left(z-z_{0}\right) \tag{2.3.12}
\end{equation*}
$$

and $\varepsilon(z) \rightarrow 0$ as $z \rightarrow z_{0}$. If this is the case, then $A=f^{\prime}\left(z_{0}\right)$.
Proof. We have already one direction. For the other direction, suppose that $f(z)$ can be written as in (2.3.12). Then, for $z \neq z_{0}$,

