For $z=i y$ with y real, we have $\operatorname{Re} z=0$, and so

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Re} z}{z}=\lim _{i y \rightarrow 0} \frac{0}{i y}=0 .
$$

Since we have obtained different limits as we approached 0 in different ways, we conclude that the function $\frac{\operatorname{Re} z}{z}$ has no limit as $z \rightarrow 0$.

The next example involves a function with infinitely many nonremovable discontinuities.

Example 2.2.17. (The nonremovable discontinuities of $\operatorname{Arg} z$) The principal branch of the argument $\operatorname{Arg} z$ takes the value of argument z that is in the interval $-\pi<$ $\operatorname{Arg} z \leq \pi$. It is not defined at $z=0$ and hence $\operatorname{Arg} z$ is not continuous at $z=0$. We show that $z=0$ is not a removable discontinuity of $\operatorname{Arg} z$ by showing that $\lim _{z \rightarrow 0} \operatorname{Arg} z$ does not exist.

Indeed, if $z=x>0$, then $\operatorname{Arg} z=0$ and so $\lim _{z=x \downarrow 0} \operatorname{Arg} z=0$, where the down-arrow denotes the limit from the right, also denoted as $\lim _{z=x \rightarrow 0^{+}} \operatorname{Arg} z$. However, if $z=x<0$, then $\operatorname{Arg} z=\pi$ and so $\lim _{z=x \uparrow 0} \operatorname{Arg} z=\pi$, where the up-arrow denotes the limit from the left, also denoted as $\lim _{z=x \rightarrow 0^{-}} \operatorname{Arg} z$. By the uniqueness of limits, we conclude that $\lim _{z \rightarrow 0} \operatorname{Arg} z$ does not exist. Also, for a point on the negative x-axis, $z_{0}=x_{0}<0$, we have $\operatorname{Arg} z_{0}=\pi$. If z approaches z_{0} from the second quadrant, say along a curve C as in Figure 2.10, we have $\lim _{z \rightarrow z_{0}} \operatorname{Arg} z=\pi=\operatorname{Arg} z_{0}$. But if z approaches z_{0} from the third quadrant, say along curve C^{\prime} as shown in Figure 2.10, we have $\lim _{z \rightarrow z_{0}} \operatorname{Arg} z=-\pi$.

Fig. 2.10 $\operatorname{Arg} z$ has nonremovable discontinuities at $z=0$ and at all negative real z.

Hence $\operatorname{Arg} z$ is not continuous at z_{0} and the discontinuity is not removable, because $\lim _{z \rightarrow z_{0}} \operatorname{Arg} z$ does not exist for such z_{0}. It is not hard to show, using geometric considerations, that for $z \neq 0$ and z not on the negative x-axis, $\operatorname{Arg} z$ is continuous. Since the set of points of continuity of $\operatorname{Arg} z$ is the complex plane \mathbb{C} minus the interval $(-\infty, 0]$ on the real line, the principal branch of the argument is continuous on $\mathbb{C} \backslash(-\infty, 0]$.

Many important functions of several variables are made up of products, quotients, and linear combinations of functions of a single variable. For example, the function $u(x, y)=e^{x} \cos y$ is the product of two functions of a single variable each; namely, e^{x} and $\cos y$. The exponential function $e^{z}=e^{x}(\cos y+i \sin y)$ is a linear combination of two products of functions of a single variable. In establishing the continuity of such functions, the following simple observations are very useful.

