Solution. (a) Since we are concerned with the behavior of the function for $|z|$ large, it is safe to divide both numerator and denominator of $\frac{z-1}{z+i}$ by z, and we conclude

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \frac{z-1}{z+i} & =\lim _{z \rightarrow \infty} \frac{1-\frac{1}{z}}{1+\frac{i}{z}} \\
& =\frac{1-\lim _{z \rightarrow \infty} \frac{1}{z}}{1+i \lim _{z \rightarrow \infty} \frac{1}{z}} \quad[\text { by (2.2.5) and (2.2.3)] } \\
& =1 \quad[\text { by (2.2.13)]. }
\end{aligned}
$$

(b) Dividing both numerator and denominator by z^{2} we write

$$
\lim _{z \rightarrow \infty} \frac{2 z+3 i}{z^{2}+z+1}=\lim _{z \rightarrow \infty} \frac{\frac{2}{z}+\frac{3 i}{z^{2}}}{1+\frac{1}{z}+\frac{1}{z^{2}}}=\frac{0+0}{1+0+0}=0
$$

While we have successfully used skills from calculus to compute complexvalued limits, real-variable intuition may not always apply. For example, the limit $\lim _{z \rightarrow \infty} e^{-z}$ is not 0 ; in fact, this limit does not exist (Exercise 21).

Continuous Functions

Often, the limit of a function as the variable approaches a point equals with the value of the function at this point. This property is called continuity.

Definition 2.2.12. Let f be defined on an a subset S of \mathbb{C} and let z_{0} be a point in S. We say that f is continuous at z_{0} if for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\begin{equation*}
z \in S, \quad\left|z-z_{0}\right|<\delta \Longrightarrow\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon \tag{2.2.14}
\end{equation*}
$$

The function f is called continuous on S if it is continuous at every point in S.
If z_{0} is not an accumulation point of S there is a $\delta>0$ with $B^{\prime}\left(z_{0}, \delta\right) \cap S=\emptyset$; then $z \in S$ and $\left|z-z_{0}\right|<\delta \Longrightarrow z=z_{0}$, thus f is continuous at z_{0}, as (2.2.14) is satisfied for any $\varepsilon>0$. If $z_{0} \in S$ happens to be an accumulation point of S, then (2.2.1) [with $\left.L=f\left(z_{0}\right)\right]$ is equivalent to (2.2.14), since obviously (2.2.14) holds when $z=z_{0}$; in this case f is continuous at z_{0} if and only if $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.

Since continuity is defined in terms of limits, many properties of limits extend to continuous functions.

Theorem 2.2.13. Let f, g be complex-valued functions defined on a subset S of \mathbb{C} and let z_{0} be a point in S. Suppose that f, g are continuous at z_{0}. Let c_{1}, c_{2} be complex constants. Then the following assertions are valid:
(i) $\operatorname{Re} f$ and $\operatorname{Im} f$ are continuous at z_{0}.

