2.2 Limits and Continuity

We have avoided thus far dealing with limits that involve ∞ . What do we mean by statements such as $\lim_{z\to z_0} f(z) = \infty$ or $\lim_{z\to\infty} f(z) = L$ or even $\lim_{z\to\infty} f(z) = \infty$? We answer these questions by introducing the following definitions.

Definition 2.2.10. (Limits Involving Infinity)

(i) If *f* is defined in a deleted neighborbood of *z*₀ we write lim_{z→z0} *f*(*z*) = ∞ to mean that for every *M* > 0 there is a δ > 0 such that 0 < |*z* − *z*₀| < δ ⇒ |*f*(*z*)| > *M*.
(ii) If *f* is defined in the complement of a disk centered at the origin we write lim_{z→∞} *f*(*z*) = *L* to mean that for every ε > 0 there is an *R* > 0 such that |*z*| > *R* ⇒ |*f*(*z*) − *L*| < ε.

(iii) If *f* is defined in the complement of a disk centered at the origin we write $\lim_{z\to\infty} f(z) = \infty$ to mean that for every M > 0 there is an R > 0 such that $|z| > R \Rightarrow |f(z)| > M$.

Looking at these definitions, we see that $z \to \infty$ means that the real quantity $|z| \to \infty$, and similarly $f(z) \to \infty$ means that $|f(z)| \to \infty$. Hence

$$\lim_{z \to z_0} f(z) = \infty \quad \Leftrightarrow \quad \lim_{z \to z_0} |f(z)| = \infty;$$
(2.2.8)

$$\lim_{z\to\infty}f(z)=L\quad\Leftrightarrow\quad \lim_{|z|\to\infty}|f(z)-L|=0; \tag{2.2.9}$$

$$\lim_{z \to \infty} f(z) = \infty \quad \Leftrightarrow \quad \lim_{|z| \to \infty} |f(z)| = \infty.$$
(2.2.10)

Limits at infinity can also be reduced to limits at $z_0 = 0$ by means of the inversion 1/z. The idea is that taking the limit as $z \to \infty$ of f(z) is the same procedure as taking the limit as $z \to 0$ of $f(\frac{1}{z})$. It is straightforward to verify that

$$\lim_{z \to \infty} f(z) = L \quad \Leftrightarrow \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = L; \tag{2.2.11}$$

and

$$\lim_{z \to \infty} f(z) = \infty \quad \Leftrightarrow \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = \infty.$$
 (2.2.12)

These equivalent statements are sometimes useful. For example, appealing to (2.2.12), we have

$$\lim_{z \to \infty} \frac{1}{z} = \lim_{z \to 0} \frac{1}{1/z} = \lim_{z \to 0} z = 0.$$
 (2.2.13)

Similarly, for a constant c and a positive integer n, we have

$$\lim_{z\to\infty}\frac{c}{z^n}=\lim_{z\to0}\frac{c}{1/z^n}=\lim_{z\to0}cz^n=0.$$

Example 2.2.11. Evaluate:

(a) $\lim_{z \to \infty} \frac{z-1}{z+i}$; and (b) $\lim_{z \to \infty} \frac{2z+3i}{z^2+z+1}$.