Geometrically, interpreting the absolute value |f(z) - L| as the distance between f(z) and L, we see from (2.2.1) that the function f(z) has limit L as $z \to z_0$ if and only if the distance from f(z) to L tends to zero as z tends to z_0 . See Figure 2.8. Thus, $\lim_{z\to z_0} f(z) = L$ if and only if

$$\lim_{z \to z_0} |f(z) - L| = 0.$$
 (2.2.2)

Note that in (2.2.1) the function f need not be defined at z_0 .

Proposition 2.2.2. (Uniqueness of Limits) If f is defined on a subset S of \mathbb{C} , z_0 is an accumulation point of S, and $\lim_{z\to z_0} f(z)$ exists, then it is *a* unique.

Proof. Suppose that $\lim_{z\to z_0} f(z) = L$ and $\lim_{z\to z_0} f(z) = L'$, where L, L' are different complex numbers. Then for $\varepsilon = |L - L'|/2 > 0$ there is a $\delta > 0$ such that

$$0 < |z - z_0| < \delta \implies |f(z) - L| < \frac{1}{2}|L - L'|$$

$$0 < |z - z_0| < \delta \implies |f(z) - L'| < \frac{1}{2}|L - L'|.$$

Adding, we obtain that for $0 < |z - z_0| < \delta$ we must have

$$|L - L'| \le |f(z) - L| + |f(z) - L'| < \frac{1}{2}|L - L'| + \frac{1}{2}|L - L'| = |L - L'|,$$

which is a contradiction since |L - L'| < |L - L'| is impossible.

Example 2.2.3. Prove that:

(a) $\lim_{z \to z_0} z = z_0$ (b) $\lim_{z \to z_0} c = c$, where *c* is a constant.

Solution. (a) Given $\varepsilon > 0$, we want to find a $\delta > 0$ so that

$$0 < |z - z_0| < \delta \quad \Rightarrow \quad |f(z) - L| < \varepsilon.$$

Identifying f(z) = z and $L = z_0$, this becomes

$$0 < |z - z_0| < \delta \quad \Rightarrow \quad |z - z_0| < \varepsilon.$$

Clearly, the choice $\delta = \varepsilon$ will do.

(b) The inequality $|f(z) - L| = |c - c| < \varepsilon$ holds for any choice of $\delta > 0$, and this shows that $\lim_{z \to z_0} c = c$.

Definition 2.2.4. A function g is called **bounded** on a set S if there is a positive real number M such that $|g(z)| \le M$ for all z in S.

For example, the function 3z + 2 + i is bounded on the disk $S = \{z : |z| < 5\}$ since