Geometrically, interpreting the absolute value $|f(z)-L|$ as the distance between $f(z)$ and L, we see from (2.2.1) that the function $f(z)$ has limit L as $z \rightarrow z_{0}$ if and only if the distance from $f(z)$ to L tends to zero as z tends to z_{0}. See Figure 2.8. Thus, $\lim _{z \rightarrow z_{0}} f(z)=L$ if and only if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}|f(z)-L|=0 \tag{2.2.2}
\end{equation*}
$$

Note that in (2.2.1) the function f need not be defined at z_{0}.
Proposition 2.2.2. (Uniqueness of Limits) If f is defined on a subset S of \mathbb{C}, z_{0} is an accumulation point of S, and $\lim _{z \rightarrow z_{0}} f(z)$ exists, then it is a unique.

Proof. Suppose that $\lim _{z \rightarrow z_{0}} f(z)=L$ and $\lim _{z \rightarrow z_{0}} f(z)=L^{\prime}$, where L, L^{\prime} are different complex numbers. Then for $\varepsilon=\left|L-L^{\prime}\right| / 2>0$ there is a $\delta>0$ such that

$$
\begin{aligned}
& 0<\left|z-z_{0}\right|<\delta \Longrightarrow|f(z)-L|<\frac{1}{2}\left|L-L^{\prime}\right| \\
& 0<\left|z-z_{0}\right|<\delta \Longrightarrow\left|f(z)-L^{\prime}\right|<\frac{1}{2}\left|L-L^{\prime}\right|
\end{aligned}
$$

Adding, we obtain that for $0<\left|z-z_{0}\right|<\delta$ we must have

$$
\left|L-L^{\prime}\right| \leq|f(z)-L|+\left|f(z)-L^{\prime}\right|<\frac{1}{2}\left|L-L^{\prime}\right|+\frac{1}{2}\left|L-L^{\prime}\right|=\left|L-L^{\prime}\right|
$$

which is a contradiction since $\left|L-L^{\prime}\right|<\left|L-L^{\prime}\right|$ is impossible.

Example 2.2.3. Prove that:
(a) $\lim _{z \rightarrow z_{0}} z=z_{0}$
(b) $\lim _{z \rightarrow z_{0}} c=c$, where c is a constant.

Solution. (a) Given $\varepsilon>0$, we want to find a $\delta>0$ so that

$$
0<\left|z-z_{0}\right|<\delta \quad \Rightarrow \quad|f(z)-L|<\varepsilon
$$

Identifying $f(z)=z$ and $L=z_{0}$, this becomes

$$
0<\left|z-z_{0}\right|<\delta \quad \Rightarrow \quad\left|z-z_{0}\right|<\varepsilon
$$

Clearly, the choice $\delta=\varepsilon$ will do.
(b) The inequality $|f(z)-L|=|c-c|<\varepsilon$ holds for any choice of $\delta>0$, and this shows that $\lim _{z \rightarrow z_{0}} c=c$.

Definition 2.2.4. A function g is called bounded on a set S if there is a positive real number M such that $|g(z)| \leq M$ for all z in S.

For example, the function $3 z+2+i$ is bounded on the disk $S=\{z:|z|<5\}$ since

