If $1 \le p \le \infty$, Hölder's inequality gives that

$$\|\partial^{\alpha}u\|_{L^{\infty}} \leq t^{|\alpha|+\frac{n}{p}}\|u\|_{L^{p}}\|\partial^{\alpha}\Phi\|_{L^{p'}}.$$

When 0 we use the alternative expression for (2.2.11) which says

$$\partial^{\alpha} u(x) = \int_{\mathbf{R}^n} t^n \Phi(t(x-y)) \partial^{\alpha} u(y) \, dy$$

for all $x \in \mathbf{R}^n$. This implies that

$$|\partial^{\alpha} u(x)| \le t^{n} \|\Phi\|_{L^{\infty}} \|\partial^{\alpha} u\|_{L^{\infty}}^{1-p} \|\partial^{\alpha} u\|_{L^{p}}^{1-p}.$$
 (2.2.12)

We take the supremum in (2.2.12) over $x \in \mathbf{R}^n$ and divide by $\|\partial^{\alpha} u\|_{L^{\infty}}$. We obtain

$$\left\|\partial^{\alpha}u\right\|_{L^{\infty}} \leq t^{\frac{n}{p}} \left\|\Phi\right\|_{L^{\infty}}^{\frac{1}{p}} \left\|\partial^{\alpha}u\right\|_{L^{p}},$$

which yields (2.2.9), in view of (2.2.8).

2.2.3 Equivalence of Function Space Norms

We now derive other consequences of Lemma 2.2.3 that will allow us to prove that different norms in Triebel–Lizorkin spaces are equivalent.

Corollary 2.2.5. Let $\Phi, \Omega, \Psi \in \mathcal{S}(\mathbf{R}^n)$. Suppose that $\widehat{\Omega}(\xi), \widehat{\Psi}(\xi)$ are supported in the annulus $1 - \frac{1}{7} \leq |\xi| \leq 2$ and that $\widehat{\Phi}(\xi)$ is supported in the ball $|\xi| \leq 2$. Let $0 < r < \infty$. Then for all f in $\mathcal{S}'(\mathbf{R}^n)/\mathcal{P}(\mathbf{R}^n)$ and for all $x \in \mathbf{R}^n$ and t > 0 we have

$$|\Phi_t * \Delta_j^{\Psi}(f)(x)| \le C_{\Phi,n,r}(M(|\Delta_j^{\Psi}(f)|^r)(x))^{\frac{1}{r}}.$$
 (2.2.13)

In particular, for any $k, j \in \mathbb{Z}$ and $x \in \mathbb{R}^n$ we have

$$\left|\Delta_k^{\Omega} \Delta_i^{\Psi}(f)(x)\right| \le C_{\Omega,n,r} \left(M\left(\left|\Delta_i^{\Psi}(f)\right|^r\right)(x)\right)^{\frac{1}{r}}.$$
 (2.2.14)

Proof. Given r pick $N = \frac{n}{r} + n + 1$. Then $\Phi_t * \Delta_j^{\Psi}(f) = 0$ when $t > \frac{7}{3}2^{-j}$ so (2.2.13) holds in this case. We may therefore suppose that $t^{-1} \ge \frac{3}{7}2^j$. Then

$$\begin{aligned} \left| (\boldsymbol{\Phi}_{t} * \boldsymbol{\Delta}_{j}^{\Psi}(f))(x) \right| &\leq C_{\Phi,N} \int_{\mathbf{R}^{n}} \frac{\left| \boldsymbol{\Delta}_{j}^{\Psi}(f)(x-z) \right|}{(1+t^{-1}|z|)^{\frac{n}{r}}} \frac{t^{-n}dz}{(1+t^{-1}|z|)^{N-\frac{n}{r}}} \\ &\leq C'_{\Phi,n,r} \sup_{z \in \mathbf{R}^{n}} \frac{\left| \boldsymbol{\Delta}_{j}^{\Psi}(f)(x-z) \right|}{(1+\frac{3}{7}2^{j}|z|)^{\frac{n}{r}}} \int_{\mathbf{R}^{n}} \frac{t^{-n}dz}{(1+t^{-1}|z|)^{N-\frac{n}{r}}} \\ &\leq C_{\Phi,n,r} (M(|\boldsymbol{\Delta}_{j}^{\Psi}(f)|^{r})(x))^{\frac{1}{r}}, \end{aligned} \tag{2.2.15}$$