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satisfies (2.2.1) and O is defined in terms of €2 in the same way that @ is defined in
terms of W, [i.e., via (2.2.2)], then the norms defined in Definition 2.2.1 with respect
to the pairs (@, %) and (O, ) are comparable. To prove this assertion we need the
following lemma.

Lemma 2.2.3. Let 0 < r < oo, Then there exist constants Cy and C, such that for all
t > 0 and for all €' functions u on R" whose distributional Fourier transform is
supported in the ball |E| < t we have
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where M denotes the Hardy-Littlewood maximal operator. The constants Cy and C,
depend only on the dimension n and r, in particular they are independent of t.

Proof. Select a Schwartz function @ whose Fourier transform is supported in the

ball |£| <2 and is equal to 1 on the unit ball || < 1. Then 5(%) is equal to 1 on
the support of & and we can write

ulr—2) = (@ u)(x=2) = [ D=z =)y dy.

Taking partial derivatives and using that @ is a Schwartz function, we obtain
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where N is arbitrarily large. Using that for all x,y,z € R" we have
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from which (2.2.6) follows easily by choosing N =n+1+n/r.

We now turn to the proof of (2.2.7). We first prove this estimate under the ad-
ditional assumption that u is a bounded function. Let |y| < & for some § > 0 to be
chosen later. We now apply the mean value theorem to write

u(x—z) = (Vu)(x—z—=&) - y+ulx—z-y)



