satisfies (2.2.1) and Θ is defined in terms of Ω in the same way that Φ is defined in terms of Ψ , [i.e., via (2.2.2)], then the norms defined in Definition 2.2.1 with respect to the pairs (Φ, Ψ) and (Θ, Ω) are comparable. To prove this assertion we need the following lemma.

Lemma 2.2.3. Let $0 < r < \infty$. Then there exist constants C_1 and C_2 such that for all t > 0 and for all C^1 functions u on \mathbf{R}^n whose distributional Fourier transform is supported in the ball $|\xi| \le t$ we have

$$\sup_{z \in \mathbf{R}^n} \frac{1}{t} \frac{|\nabla u(x-z)|}{(1+t|z|)^{\frac{n}{r}}} \le C_1 \sup_{z \in \mathbf{R}^n} \frac{|u(x-z)|}{(1+t|z|)^{\frac{n}{r}}},$$
(2.2.6)

$$\sup_{z \in \mathbf{R}^n} \frac{|u(x-z)|}{(1+t|z|)^{\frac{n}{r}}} \le C_2 M(|u|^r)(x)^{\frac{1}{r}},$$
(2.2.7)

where *M* denotes the Hardy–Littlewood maximal operator. The constants C_1 and C_2 depend only on the dimension *n* and *r*; in particular they are independent of *t*.

Proof. Select a Schwartz function Φ whose Fourier transform is supported in the ball $|\xi| \le 2$ and is equal to 1 on the unit ball $|\xi| \le 1$. Then $\widehat{\Phi}(\frac{\xi}{t})$ is equal to 1 on the support of \widehat{u} and we can write

$$u(x-z) = (\Phi_{1/t} * u)(x-z) = \int_{\mathbf{R}^n} t^n \Phi(t(x-z-y))u(y) \, dy.$$

Taking partial derivatives and using that Φ is a Schwartz function, we obtain

$$|\nabla u(x-z)| \le C_N \int_{\mathbf{R}^n} t^{n+1} (1+t|x-z-y|)^{-N} |u(y)| \, dy,$$

where *N* is arbitrarily large. Using that for all $x, y, z \in \mathbf{R}^n$ we have

$$1 \le (1+t|x-z-y|)^{\frac{n}{r}} \frac{(1+t|z|)^{\frac{n}{r}}}{(1+t|x-y|)^{\frac{n}{r}}},$$

we obtain

$$\frac{1}{t} \frac{|\nabla u(x-z)|}{(1+t|z|)^{\frac{n}{r}}} \le C_N \int_{\mathbf{R}^n} t^n (1+t|x-z-y|)^{\frac{n}{r}-N} \frac{|u(y)|}{(1+t|x-y|)^{\frac{n}{r}}} \, dy,$$

from which (2.2.6) follows easily by choosing N = n + 1 + n/r.

We now turn to the proof of (2.2.7). We first prove this estimate under the additional assumption that *u* is a bounded function. Let $|y| \le \delta$ for some $\delta > 0$ to be chosen later. We now apply the mean value theorem to write

$$u(x-z) = (\nabla u)(x-z-\xi_y) \cdot y + u(x-z-y)$$

94