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where we used Corollary 2.1.12 in [156], the L2 boundedness of the Hardy–
Littlewood maximal operator, hypothesis (2.1.63), the fact that f j = g j on (Ωλ )

c,
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Multiplying this estimate by pλ p−1, recalling that Ωλ = {M N(~f ) > γ λ}, and in-
tegrating in λ from 0 to ∞, we can easily obtain∥∥M(~K ∗~f ;Φ)
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Choosing γ =(A+B)−1, recalling that N = [ n
p ]+1, and using that ‖M N(~f )‖Lp(Rn)≤

C′(n, p)‖~f ‖Lp(Rn,`2
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, gives the required conclusion.

Finally, we discuss the extension of the operator (2.1.64) to the entire H p(Rn, `2
L).

In view of Proposition 2.1.7, L1(Rn)∩H p(Rn) is dense in H p(Rn). It follows that
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H p(Rn, `2

L), find sequences h(k)j in L1(Rn) such that h(k)j → f j in H p(Rn) as k→ ∞.

Set~h(k) = (h(k)1 , . . . ,h(k)L ). Then for any Φ ∈S (Rn) with integral one we have

M(~f −~h(k);Φ)≤M( f1−~h(k)1 ;Φ)+ · · ·+M( fL−~h(k)L ;Φ) .

Apply the Lp quasi-norm on both sides of the preceding expression and then let
k→ ∞ to obtain the density of L1(Rn, `2
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L) in H p(Rn, `2

L). In view of
this, the operator in (2.1.64) admits a unique bounded extension from H p(Rn, `2

L) to
H p(Rn). �

Exercises

2.1.1. Prove that if v is a bounded tempered distribution and h1,h2 are in S (Rn),
then

(h1 ∗h2)∗ v = h1 ∗ (h2 ∗ v).


