2.1 Hardy Spaces

$$\leq \frac{C_n B^2}{\lambda^2} \int_{\Omega_{\lambda}} \sum_{j=1}^L |g_j(x)|^2 dx + \frac{C_n B^2}{\lambda^2} \int_{(\Omega_{\lambda})^c} \sum_{j=1}^L |f_j(x)|^2 dx$$

$$\leq B^2 C_{N,n} \gamma^2 |\Omega_{\lambda}| + \frac{C_n B^2}{\lambda^2} \int_{(\Omega_{\lambda})^c} \mathscr{M}_N(\vec{f})(x)^2 dx,$$

where we used Corollary 2.1.12 in [156], the L^2 boundedness of the Hardy–Littlewood maximal operator, hypothesis (2.1.63), the fact that $f_j = g_j$ on $(\Omega_{\lambda})^c$, estimate (2.1.66), and the fact that $\|\vec{f}\|_{\ell_L^2} \leq \mathcal{M}_N(\vec{f})$ in the preceding sequence of estimates.

On the other hand, estimate (2.1.71) gives

$$\left|\left\{M(\vec{K}\ast\vec{b};\Phi)>\frac{\lambda}{2}\right\}\right|\leq |\Omega_{\lambda}|+2C_{N,n}A\gamma|\Omega_{\lambda}|,$$

which, combined with the previously obtained estimate for \vec{g} , gives

$$\left|\left\{M(\vec{K}*\vec{f};\Phi)>\lambda\right\}\right| \le 2C_{N,n}(1+A\gamma+B^2\gamma^2)\left|\Omega_{\lambda}\right| + \frac{C_nB^2}{\lambda^2}\int_{(\Omega_{\lambda})^c}\mathcal{M}_N(\vec{f})(x)^2\,dx$$

Multiplying this estimate by $p\lambda^{p-1}$, recalling that $\Omega_{\lambda} = \{\mathcal{M}_N(\vec{f}) > \gamma\lambda\}$, and integrating in λ from 0 to ∞ , we can easily obtain

$$\left\| M(\vec{K} * \vec{f}; \boldsymbol{\Phi}) \right\|_{L^{p}(\mathbf{R}^{n})}^{p} \leq 2C_{N,n} (1 + A\gamma + B^{2}\gamma^{2})\gamma^{-p} \left\| \mathscr{M}_{N}(\vec{f}) \right\|_{L^{p}(\mathbf{R}^{n})}^{p}.$$
(2.1.72)

Choosing $\gamma = (A+B)^{-1}$, recalling that $N = [\frac{n}{p}] + 1$, and using that $\|\mathscr{M}_N(\vec{f})\|_{L^p(\mathbb{R}^n)} \leq C'(n,p) \|\vec{f}\|_{L^p(\mathbb{R}^n,\ell_r^2)}$, gives the required conclusion.

Finally, we discuss the extension of the operator (2.1.64) to the entire $H^p(\mathbf{R}^n, \ell_L^2)$. In view of Proposition 2.1.7, $L^1(\mathbf{R}^n) \cap H^p(\mathbf{R}^n)$ is dense in $H^p(\mathbf{R}^n)$. It follows that $L^1(\mathbf{R}^n, \ell_L^2) \cap H^p(\mathbf{R}^n, \ell_L^2)$ is dense in $H^p(\mathbf{R}^n, \ell_L^2)$. Indeed, given $\vec{f} = (f_1, \ldots, f_L)$ in $H^p(\mathbf{R}^n, \ell_L^2)$, find sequences $h_j^{(k)}$ in $L^1(\mathbf{R}^n)$ such that $h_j^{(k)} \to f_j$ in $H^p(\mathbf{R}^n)$ as $k \to \infty$. Set $\vec{h}^{(k)} = (h_1^{(k)}, \ldots, h_L^{(k)})$. Then for any $\Phi \in \mathscr{S}(\mathbf{R}^n)$ with integral one we have

$$M(\vec{f} - \vec{h}^{(k)}; \Phi) \le M(f_1 - \vec{h}_1^{(k)}; \Phi) + \dots + M(f_L - \vec{h}_L^{(k)}; \Phi).$$

Apply the L^p quasi-norm on both sides of the preceding expression and then let $k \to \infty$ to obtain the density of $L^1(\mathbf{R}^n, \ell_L^2) \cap H^p(\mathbf{R}^n, \ell_L^2)$ in $H^p(\mathbf{R}^n, \ell_L^2)$. In view of this, the operator in (2.1.64) admits a unique bounded extension from $H^p(\mathbf{R}^n, \ell_L^2)$ to $H^p(\mathbf{R}^n)$.

Exercises

2.1.1. Prove that if v is a bounded tempered distribution and h_1, h_2 are in $\mathscr{S}(\mathbf{R}^n)$, then

$$(h_1 * h_2) * v = h_1 * (h_2 * v).$$