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it follows that (2.1.65) is at most a constant multiple of A, since the ball B(c(Qy),d)
meets the complement of 2, . We conclude that
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We now estimate M(Zle Kj*bj;®). For fixed k and € > 0 we have
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where we set Rjk (x,z) for the expression inside the curly brackets. Using (2.1.52),
we obtain '
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Since @ (z) is supported in $Qy, the term (1+
factor in the integral defining 9y (RS, (x, ) @r;c(Qk), di), and we obtain
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For notational convenience we set K¥ = @+ K;. We observe that the family {K¥}
satisfies (2.1.62) and (2.1.63) with constants A’ and B’ that are-enly multiples of
A + B respeetively; uniformly in €; see Exercise 2.1.13. We now obtain a pointwise
estimate for My (RS, (x, -)x;c(Qx),di) when x € R"\ ;. For fixed x € R"\ 2,
we have
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