[*Hint:* The first inequality follows by Leibniz's rule. Conversely, to express $\xi^{\alpha}\partial^{\beta}\varphi$ in terms of linear combinations of $\partial^{\beta}(\xi^{\gamma}\varphi(\xi))$, proceed by induction on $|\alpha|$, using that $\xi_{j}\partial^{\beta}\varphi = \partial^{\beta}(\xi_{j}\varphi) - \beta_{j}\partial^{\beta-e_{j}}\varphi$ if $\beta_{j} \ge 1$ and $\xi_{j}\partial^{\beta}\varphi = \partial^{\beta}(\xi_{j}\varphi)$ if $\beta_{j} = 0$. Here $\beta = (\beta_{1}, \dots, \beta_{n})$ and $e_{j} = (0, \dots, 1, \dots, 0)$ with 1 in the *j*th entry.]

1.1.2. Suppose that a function φ lies in $\mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ and that for all multi-indices α there exist constants L_{α} such that φ satisfies

$$\lim_{t\to 0}\partial^{\alpha}\varphi(t) = L_{\alpha}$$

Then φ lies in $\mathscr{C}^{\infty}(\mathbf{R}^n)$ and $\partial^{\alpha}\varphi(0) = L_{\alpha}$ for all multi-indices α .

1.1.3. Let $u_N \in \mathscr{S}'(\mathbb{R}^n)$. Suppose that $u_N \to u$ in \mathscr{S}'/\mathscr{P} and $u_N \to v$ in \mathscr{S}' . Then prove that u - v is a polynomial.

Hint: Use Proposition 1.1.3 or directly Proposition 2.4.1 in [156].

1.1.4. Suppose that Ψ is a Schwartz function whose Fourier transform is supported in an annulus that does not contain the origin and satisfies $\sum_{j \in \mathbb{Z}} \widehat{\Psi}(2^{-j}\xi) = 1$ for all $\xi \neq 0$. Show that for functions $g \in L^1(\mathbb{R}^n)$ with $\widehat{g} \in L^1(\mathbb{R}^n)$ we have $\sum_{j \in \mathbb{Z}} \Delta_j^{\Psi}(g) = g$ pointwise everywhere.

1.1.5. Let Θ and Φ be Schwartz functions whose Fourier transforms are compactly supported and let Ψ, Ω be Schwartz functions whose Fourier transforms are supported in annuli that do not contain the origin and satisfy

$$\widehat{\Phi}(\xi)\widehat{\Theta}(\xi) + \sum_{j=1}^{\infty}\widehat{\Psi}(2^{-j}\xi)\widehat{\Omega}(2^{-j}\xi) = 1$$

for all $\xi \in \mathbf{R}^n$. Then for all $f \in \mathscr{S}'(\mathbf{R}^n)$ we have

$$\varPhi \ast \Theta \ast f + \sum_{j=1}^\infty \varDelta_j^\varPsi \varDelta_j^\Omega(f) = f$$

where the series converges in $\mathscr{S}'(\mathbf{R}^n)$.

1.1.6. (a) Show that for any multi-index α on \mathbb{R}^n there is a polynomial Q_α of *n* variables of degree $|\alpha|$ such that for all $\xi \in \mathbb{R}^n$ we have

$$\partial^{\alpha}(e^{-|\xi|^2}) = Q_{\alpha}(\xi)e^{-|\xi|^2}.$$

(b) Show that for all multi-indices $|\alpha| \ge 1$ and for each k in $\{0, 1, ..., |\alpha| - 1\}$ there is a polynomial $P_{\alpha,k}$ of *n* variables of degree at most $|\alpha|$ such that

$$\partial^{\alpha}(e^{-|\xi|}) = \sum_{k=0}^{|\alpha|-1} \frac{1}{|\xi|^k} P_{\alpha,k}\left(\frac{\xi_1}{|\xi|}, \dots, \frac{\xi_n}{|\xi|}\right) e^{-|\xi|}$$