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where N = [ n
p ]+1, and consequently there is a constant Cn,p such that∣∣〈 f ,ϕ

〉∣∣≤NN(ϕ)Cn,p
∥∥ f
∥∥

H p . (2.1.50)

(b) Let 0 < p≤ 1, N = [n/p]+1, and p≤ r ≤∞. Then there is a constant C(p,n,r)
such that for any f ∈ H p and ϕ ∈S (Rn) we have∥∥ϕ ∗ f

∥∥
Lr ≤C(p,n,r)NN(ϕ)

∥∥ f
∥∥

H p . (2.1.51)

(c) For any x0 ∈ Rn, for all R > 0, and any ψ ∈S (Rn), we have∣∣〈 f ,ψ
〉∣∣≤NN(ψ;x0,R) inf

|z−x0|≤R
MN( f )(z) . (2.1.52)

Proof. (a) We use that 〈 f ,ϕ
〉
= (ϕ̃ ∗ f )(0), where ϕ̃(x) = ϕ(−x) and we observe

that NN(ϕ) =NN(ϕ̃). Then (2.1.49) follows from the inequality

|(ϕ̃ ∗ f )(0)| ≤NN(ϕ)M∗1
(

f ;
ϕ̃

NN(ϕ)

)
(z)≤NN(ϕ)MN( f )(z)

for all |z| < 1, which is valid, since ϕ̃/NN(ϕ) lies in FN . We deduce (2.1.50) as
follows: ∣∣〈 f ,ϕ

〉∣∣p ≤ NN(ϕ)
p inf
|z|≤1

MN( f )(z)p

≤ NN(ϕ)
p 1
|B(0,1)|

∫
|z|≤1

MN( f )p dz

≤ NN(ϕ)
p Cp

n,p
∥∥ f
∥∥p

H p .

(b) For any fixed x ∈ Rn and t > 0 we have

|(ϕt ∗ f )(x)| ≤NN(ϕ)M∗1
(

f ;
ϕ

NN(ϕ)

)
(y)≤NN(ϕ)MN( f )(y) (2.1.53)

for all y satisfying |y− x| ≤ t. Restricting to t = 1 yields

|(ϕ ∗ f )(x)|p ≤ NN(ϕ)
p

|B(x,1)|
∫

B(x,1)
MN( f )(y)p dy≤NN(ϕ)

pCp
p,n
∥∥ f
∥∥p

H p .

This implies that ‖ϕ ∗ f‖L∞ ≤ Cp,nNN(ϕ)‖ f‖H p . Choosing y = x and t = 1 in
(2.1.53) and then taking Lp quasi-norms yields a similar estimate for ‖ϕ ∗ f‖Lp .
By interpolation we deduce ‖ϕ ∗ f‖Lr ≤C(p,n,r)NN(ϕ)‖ f‖H p , when p≤ r ≤ ∞.

(c) To prove (2.1.52), given a Schwartz function ψ and R > 0, define ϕ(y) =
ψ(−Ry+ x0) so that ψ(x) = ϕ( x0−x

R ) = RnϕR(x0− x). In view of (2.1.53) we have∣∣〈 f ,ψ
〉∣∣= Rn∣∣(ϕR ∗ f )(x0)

∣∣≤ RnNN(ϕ) inf
|z−x0|≤R

MN( f )(z) .
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But a simple change of variables shows that RnN(ϕ) =N(ψ;x0,R) and this com-
bined with the preceding inequality yields (2.1.52).

�

Proposition 2.1.10. Let 0 < p≤ 1. Then the following statements are valid:
(a) Convergence in H p implies convergence in S ′.
(b) If fk ∈ H p satisfy supk∈Z+ ‖ fk‖H p ≤ C < ∞ and fk → f in S ′(Rn) as k→ ∞,
then f ∈ H p.
(c) H p is a complete quasi-normed metrizable space.

Proof. (a) Let f j, f in H p(Rn) and suppose that f j → f in H p(Rn). Applying
(2.1.50) we obtain that for any ϕ ∈S (Rn) we have 〈 f j− f ,ϕ〉 → 0; hence f j→ f
in S ′(Rn).

(b) For any Φ ∈S (Rn) with integral one and t > 0 we have Φt ∗ fk→Φt ∗ f as
k→ ∞, since fk→ f in S ′(Rn). Thus

|Φt ∗ f |= liminf
k→∞

|Φt ∗ fk| ≤ liminf
k→∞

sup
t>0
|Φt ∗ fk| .

Taking the supremum over t, we obtain supt>0 |Φt ∗ f | ≤ liminfk→∞ supt>0 |Φt ∗ fk|.
Then we apply Lp quasi-norms and Fatou’s lemma to deduce that ‖M( f ;Φ)‖Lp is
bounded by a multiple of C; thus, f ∈ H p.

(c) Suppose { f j}∞
j=1 is a Cauchy sequence in H p(Rn). Then there is a constant C0

such that sup j≥1 ‖ f j‖H p ≤C0. Using (2.1.50) (with f j− fk in place of f ) we obtain
that for every ϕ in S (Rn) the sequence {〈 f j,ϕ〉}∞

j=1 is Cauchy in C and thus it
converges to a complex number f (ϕ). We claim that the mapping ϕ 7→ f (ϕ) is a
tempered distribution. We clearly have

| f (ϕ)|= lim
k→∞

∣∣〈 fk,ϕ〉
∣∣≤Cn,pNN(ϕ)C0 .

But an easy calculation shows that NN(ϕ) is controlled by the finite sum of semi-
norms ρα,β (ϕ) with |α|, |β | ≤N+n+1. This yields that f lies in S ′(Rn), in partic-
ular f is a bounded distribution, and obviously f j → f in S ′(Rn). Part (b) implies
that f is an element of H p(Rn).

Next we show that fk→ f in H p. Given Φ ∈S (Rn) with integral 1, we have for
any t > 0 and any k ≥ 1

|( fk− f )∗Φt |= liminf
`→∞

|( fk− f`)∗Φt | ≤ liminf
`→∞

sup
t>0
|( fk− f`)∗Φt | .

Taking the supremum over t > 0 on the left and then the Lp quasi-norm and applying
Fatou’s lemma we deduce that∥∥M( fk− f ;Φ)

∥∥
Lp ≤ liminf

`→∞

∥∥M( fk− f`;Φ)
∥∥

Lp .

Letting k→ ∞ we obtain that

limsup
k→∞

∥∥M( fk− f ;Φ)
∥∥

Lp ≤ limsup
k,`→∞

∥∥M( fk− f`;Φ)
∥∥

Lp = 0;


