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where N = [%] + 1, and consequently there is a constant Cy, ;, such that

[(£,0)] < (@) Cop || ] - (2.1.50)

(b)Let0 < p<1,N=[n/p]+1, and p < r < oo. Then there is a constant C(p,n,r)
such that for any f € HP and ¢ € /(R") we have

I

(c) For any xo € R", for all R > 0, and any y € . (R"), we have

1 <C(p,n, )N (9)||f]] 5 - (2.1.51)

|(f, w)] < N (w:xo,R) ‘Z_ixn‘f<R///N(f) (2). (2.1.52)

Proof. (a) We use that (f, @) = (¢ * £)(0), where @(x) = ¢(—x) and we observe
that 9y (@) = 9y (@). Then (2.1.49) follows from the inequality

@00 < Ml (£ @) < )12

for all |z| < 1, which is valid, since @/My (@) lies in Fy. We deduce (2.1.50) as
follows:

[(f, 0)|” < Nw(@)? inf Ay (f)(2)"

lz|<1

1
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AN (f)P dz
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(b) For any fixed x € R" and t > 0 we have

(9= )| <T@ (f: g ros ) O) <T@ a(N0) @159

for all y satisfying |y — x| <. Restricting to t = 1 yields

‘ﬂN((P)
IB(x, )| JB(x.1)

This implies that ||@ * f||z= < Cp DN (@)| f||#r. Choosing y = x and r =1 in
(2.1.53) and then taking L” quasi-norms yields a similar estimate for ||@ * f||».
By interpolation we deduce ||@ * f||r < C(p,n,r)NNn (@) || f]|zr, when p < r < oo,
(c) To prove (2.1.52), given a Schwartz function y and R > 0, define ¢(y) =
V(—Ry+x0) so that y(x) = @(*~) = R"@r(xo —x). In view of (2.1.53) we have

(W) =R [(gr* f)(x0)| <R" 9 (@) inf 4y(f)(2).

|z—xo|<R

[(@* /)] <

My ()" dy < N (@)PCE, || £117s
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But a simple change of variables shows that R" (@) = 91(y;x0,R) and this com-
bined with the preceding inequality yields (2.1.52).
O

Proposition 2.1.10. Let 0 < p < 1. Then the following statements are valid:

(a) Convergence in HP implies convergence in ..

(b) If fi € HP satisfy supyez+ || fellar < C < oo and fi — f in 7' (R") as k — oo,
then f € HP.

(c) H? is a complete quasi-normed metrizable space.

Proof. (a) Let f;,f in HP?(R") and suppose that f; — f in H”(R"). Applying
(2.1.50) we obtain that for any ¢ € (R") we have (f; — f,¢) — 0; hence f; — f
in ./ (R").

(b) For any @ € ./(R") with integral one and ¢ > 0 we have &, x f;, — &, x f as
k — oo, since fy — f in .#/(R"). Thus

| D, f| = liminf| D  f| < liminfsup |D; * fi].
k—so0 k—yoo0 >0

Taking the supremum over ¢, we obtain sup, |®; * f| < liminfy_e sup,~q | P * fi|.
Then we apply L? quasi-norms and Fatou’s lemma to deduce that ||M(f; P)||r» is
bounded by a multiple of C; thus, f € H?.

(c) Suppose {f;}7_, is a Cauchy sequence in H”(R"). Then there is a constant Co
such that sup ;. || fjl[m» < Co. Using (2.1.50) (with f; — fi in place of f) we obtain
that for every ¢ in .7/(R") the sequence {(f;,9)}7_; is Cauchy in C and thus it
converges to a complex number f(¢). We claim that the mapping ¢ — f(¢) is a
tempered distribution. We clearly have

£(@)] = fim |(fi,9)] < CupTn(0)Co.

But an easy calculation shows that Dy (@) is controlled by the finite sum of semi-
norms py g (@) with |, [B| < N +n+ 1. This yields that f lies in.#”(R"), in partic-
ular f is a bounded distribution, and obviously f; — f in .#”/(R"). Part (b) implies
that f is an element of H”(R").

Next we show that f; — f in H?. Given @ € .7 (R") with integral 1, we have for
any t >0and any k > 1

|(fi — ) * & | = liminf|(fiy — f¢) * @] < liminfsup |(fi — fo) * D]
{—ro0 =0 150

Taking the supremum over ¢ > 0 on the left and then the L” quasi-norm and applying
Fatou’s lemma we deduce that

1M (fic— f:®)||, < liminf | M(fi — fir )|, -
Letting k — oo we obtain that

limsup ||M(fi — f;D)|
k—yo0

Ly S hmsupHM(fk _f/’¢)||Lp = O,
k{—o0



