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It follows from the definition of M (f;®)(z) = SUp,~q SUP}y,_| < |(Pr * ) (w)| that
[( P+ f)(x=y)| SMa(f;@)(z)  if z€B(x—y,ar).

But the ball B(x — y,at) is contained in the ball B(x, |y| 4 at); hence it follows that
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from which we conclude that for all x € R" we have
b
M3 (£50)(x) < max(1,a™?) {M(M(£;0)8) ()}

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy—Littlewood maximal operator M on L"?/", we obtain the required conclusion
(2.1.14).

(d) In proving (d) we may replace b by the integer by = [b] + 1. Let & be a

Schwartz function with integral equal to 1. Applying Lemma 2.1.5 with m = by, we
write any function ¢ in .’ (R") as

1
o0) = [ @+ @)()ds
for some choice of Schwartz functions ®®). Then we have
1
0.0) = [ (©“)+ @) ds

for all # > 0. Fix x € R". Then for y in B(x,¢) we have
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where we applied conclusion (2.1.18) of Lemma 2.1.5. Setting N = by = [b] + 1, we
obtain for y in B(x,¢) and ¢ € ./ (R"),

(@ f)(3)] < 270Co( P, bo) My, (@) My (f: D) (x) -

Taking the supremum over all y in B(x,t), over all # > 0, and over all ¢ in Fy, we
obtain the pointwise estimate

A (f)(x) < 27Co (P, bo) My (@) (). x€R,
where N = by. This clearly yields (2.1.15) if we set Cy = 220Cy(®, by).

(e) We fix an f € ./(R") that satisfies ||.Zx (f)||Lr < o for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ¢
and we observe that for some positive constant ¢ = ¢, we have that ¢ ¢ is an element
of .Zy and thus M; (f;c @) < .#n(f). Then

Pll@x )P < inf sup |(coxf)(2)]”

y=x<1,—y|<1

inf Mi(f;co)(y)”

ly—x|<1
1 *
< — Mi(fic@)(y)Pdy
Vi Jly—x|<1
.
< — | Mi(fico)(y)dy
Vn Rn
1
< — | N(f) ()P dy <o,
Vn JR?

which implies that @ x f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of H”. We fix a smooth
radial nonnegative compactly supported function 6 such that

1 if 1,
0(x) = it k<
0 if |x[>2.

We observe that the identity

P(x) = P(x)0(x)+ ¥ (62 %x)P(x) — 82~ % Dx)P(x))
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and we claim that for all bounded tempered distributions f and for all # > 0 we have

n+l
B*f:(6P>f*f+F(nE )
Tz

27K (D" % f (2.1.38)

™

where the series converges in .’ (R"); see Exercise 2.1.5.

Assuming (2.1.38), we claim that for some fixed constant ¢y = co(n,N), the func-
tions co @ P and co®® lie in Fy uniformly in k =1,2,3,....

To verify this assertion for |@| < N+ 1, we apply Leibniz’s rule to write
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and this estimate follows from the fact that the function (£ + |x\2)’% is homoge-
neous of degree —n — 1 on R"*! and smooth on the sphere S”. These estimates are
uniform in k = 0,1,2,... and thus 9y (6P) + Ny (PX)) < 1/co(n,N) for all some
constant ¢y = co(n,N) forall k=0,1,2,....
Then we obtain
i oo
Sngle #fl < Sup\(el’) ] + — %2 Z Sup| @My, % f]
> =1

I /\

5(”7N)%N(f),

which proves the required conclusion (2.1.16).
We observe that the last estimate also yields the stronger estimate

M (f;P)(x) =sup sup |(P+f)(y)| < Cs(n,N).an(f)(x). (2.1.39)
t>0 yeR"
[y—x|<t
It follows that the quasi-norm ||M] (f;P)||»(r») is also equivalent to || f||z». O

Remark 2.1.6. To simplify the understanding of the equivalences just proved, a
first-time reader may wish to define the H” quasi-norm of a distribution f as

£ 1|0 = M5 (f3 P

and then study only the implications (a) = (c), (¢c) = (d), (d) = (e), and
(e) = (a) in the proof of Theorem 2.1.4. In this way one avoids passing through
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the statement in part (b). For many applications, the identification of || f||g» with
|M7 (f; @)||» for some Schwartz function @ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 2.1.4 yields

HfHHP(Rﬂ) ~ H%N(f)HLP(R")’

— [n
where N = [7] + 1.

2.1.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 2.1.4. In many appli-
cations we need to be working with dense subspaces of H”. It turns out that both
HP NL?* and H? N L' are dense in H?.

Proposition 2.1.7. Let 0 < p < 1 and let r satisfy p < r < oo, Then L' NH? is dense
in HP. In particular, HP NL2 and HP N L' are dense in HP.

Proof. Let f be a distribution in H?(R"). Recall the Poisson kernel P(x) and set
N= [%] + 1. For any fixed x € R" and ¢ > 0 we have

[(Bx f)(x)] < M{(f3P)(y) < Cttn(f)(Y) (2.1.40)

for any |y —x| <. Indeed, the first estimate in (2.1.40) follows from the definition
of M{(f;P), and the second estimate by (2.1.39). Raising (2.1.40) to the power p
and averaging over the ball B(x,), we obtain

cr c?
er)l <o [ ey ay< . @14

It follows that the function P,  f is in L (R") with norm at most a constant multiple
of r=/P || £1l . Moreover, this function is also in L”(R"), since it is controlled by
M(f;P). Therefore, the functions P, * f lie in L"(R") for all r with p < r < oo, It
remains to show that P; x f also lie in H” and that P, x f — fin H” ast — 0.

To see that P, x f lies in H”, we use the semigroup formula P, x Py = P, for the
Poisson kernel, which is a consequence of the fact that P;(€) = e~ 2%l by applying
the Fourier transform. Therefore, for any r > 0 we have

sup [Py P+ f| = sup [Pyt * f| < sup [Py f],
s>0 s>0 s>0

which implies that
1B Ao < 11711

for all # > 0. We now need to show that P; « f — f in H” ast — 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup|Ps * P f — Py f| <2sup P+ f| € LP(R"), (2.1.42)
>0

s>0 K
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which will be a consequence of the semigroup formula P, = P * P; and the a.e.
convergence property (2.1.43) of the subsequent theorem. O

Theorem: (A. Calder6n) Let 0 < p < oo. The for any f € HP(R"), the harmonic
function (x,s) — (Py* f)(x) on R satisfies for almost all x € R"

sup|(P x Py f —Pyx f)(x)] =0 as 7—0. (2.1.43)
>0

Proof. To show that (x,s) = (P % f)(x) is harmonic on R™"" we fix a function
No whose Fourier transform is supported in a ball centered at 0 and we let M. =
1 —no. Then Py x f = Py« (Mo * f) + (P * N ) * f. The convolutions are well defined
as P x N is a Schwartz function and 7o * f is a bounded function, since f is a
bounded distribution. Let A be the Laplacian in both x € R” and s > 0. Then we have
A(Pyx f) =A(Py)*«(Mo* f) + A(Py* M) x f but A(P;) =0 and also A (P % Nw) =0,
which easily follows by applying A to (Py* Ne)(x) = [gn e 2S5 (E) 25 dE.
We begin the proof of (2.1.43) by fixing € > 0. In view of (2.1.41), we have

sup sup |(Py# Py f — Py f) (x)| < C'M /P
XeR" s>M
and we pick M such that C'M /P < g /2. Tt will suffice to show that there is a subset
E of R" of Lebesgue measure zero such that for all x € R" \ E we have
sup (P £)(x) — (Pox ) ()] < £/2, (2.1.44)
0<s<M
provided 7 is sufficiently close to zero (depending on x). We claim that there is set
of measure zero E such that for all x € R"\ E

(Pyx f)(x) convergesas s— 0. (2.1.45)

Assuming (2.1.45) we obtain (2.1.44) via the following argument. For x € R"\ E
the function s — (P * f)(x) is continuous on (0,M] and has a limit as s — 0, hence
it has a uniformly continuous extension on [0, M]. Then for x € R" \ E and for the
given € > 0 there is a £, > 0 such that (2.1.44) holds for all ¢ satisfying 0 <1 < t,.
We therefore focus on (2.1.45). Since || (f)||r < oo, there is a null set E’
consisting of all x € R” for which .#y (f)(x) = co. We begin by observing that, as a
consequence of (2.1.39), for every x € R"\ E’ there is a constant Cy < o such that

sup sup |(Fxf) ()] < Cx,
t>0 yeR"
[y—x|<t

in other words, the harmonic function (y,7) — u(y,t) = (P, = f)(y) is bounded on the
cone I; = {(z,5) e R" x RT : |x—z| <s}. Letting Uy, = {x € R": |u| <mon I;}
for m € Z" we have |J;,_, U, = R"\ E’, and so it suffices to prove (2.1.45) for
almost all x in a given U,,. Moreover, as R”" is a countable union of cubes, we may
also assume that the given U, is intersected with a fixed cube Q. Having made all
these assumptions, for j € Z* we define sets

G- U B -®rn U G-

yeUnNQ yeUnNQ
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where for a given cone I; and 6 > 0, I — & denotes the set {(z,s —8) : (z,5) €I, },
i.e., the vertical downwards translation of I by the quantity 8. Notice that all G;
(j=1,2,...) are open sets contained in a fixed compact set Q'

Consider the sequence of functions Fj(x) = xg; (x)(P/;* f)(x), j=1,2,.... We
claim that these functions bounded by my uniformly in j. Indeed, given x € G; we
havex e I}, — % for some y € U,, N Q, thus (x, %) €Iy and |(P/;* f)(x)| <m. Thus the

functions Fj lie in a multiple of the unit ball of L?(R") and by the Banach-Alaoglou
theorem there is a subsequence { j }7-_, of Z* and a function F € L*(R") such that
F; — F weakly in L?. In particular, this implies that Py % Fij, — PyxF ask — oo,
For any s > 0 and x € T" we write (P f)(x) = (P f)(x) — (Ps* F ) (x) + (Pyx F) (x)
and to prove (2.1.45), we will use that!

(PixF)(x) —F(x) =0 for almost all x € R", (2.1.46)
[which also holds for functions Fy € L*(R")], and
(P f)(x) — (Py+F)(x) — 0 for almost all x € R". (2.1.47)
Now consider the harmonic function on R:’_“ given by
w(x7t):2mt—|—c/ P(x—y)dy
R\ (UnNQ)

for some ¢ > 0 to be determined. Define an open set

Q= J Ln{neR <1}
yeUnNQ
We claim that
w(x,r) >2m ondQ\ (U,NQ). (2.1.48)
and that the limit of w(x,7) exists as t — 0" for almost all x € U,, N Q; to see this
last assertion we apply (2.1.46) to the bounded function Fy = Xgm\ (1,,n0)-

We now prove (2.1.48). This assertion is obvious on the top part of the boundary
of Q. Let (xo,%)) € dQ with 0 < 1y < 1. For (x¢,#p) in Rf’ﬁl consider the inverted
cone [0%0) = {(ys) € R ¢ |y —xo| < 1o — s} which satisfies I"¥0/0) N R" =
B(x0,10). We claim that B(xo,p) NU,, NQ = 0; indeed, if B(xo,#9) NU, NQ contained
a point yo, then xo would lie in I, N {(z,¢) € R%"" : # < 1} which is impossible since
(x0,%0) lies in the boundary of Q. Then

r) e, 'dr
W(.X(),l()) Z / CPtO(.X()—y)dyZ / CPto(xo_y)dy:c ,131 el ntl

Tz Jo (14272
Rn\(UmﬁQ) ‘)C()*)"SI() ( o )

and this can be made to be larger than 2m by choosing ¢ = ¢(n,m) suitably. Thus
(2.1.48) also holds on the non horizontal part of the boundary of Q.

We finally focus on the proof of (2.1.47). We observe that (P f)(x) — (Pyx F)(x)
is equal to the pointwise limit of (Ps* Py/j, * f)(x) — (Ps* Fj,)(x) as k — oo for all
x € R" and s > 0. We claim that for every j; we have

! For a proof see the book’s website: http://faculty.missouri.edu/~grafakosl/FourierAnalysis.html
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@) [(PsxPyyj * f)(x) = (Po* Fj ) (x)| < 2mforall (x,5) € Q,
(i) [(PyxPyyj % f)(x) = (PoxFj ) (x)] = 0as Q 3 (x,5) = (x0,0"), where xo € Gaj.

To prove (i) note that for a given (x,s) € Q, there is a y € U,, N Q such that
(x,5) €I5. Then (x,s+1/ ji) € Iy, hence |(Pyx Py, f)(xX)| = [(Pyp1/j, ) (x)| <m
as well. Moreover, ||Fj, ||z~ < m, thus |(P;* Fj,)(x)| < m for any x € R". For (ii) we
use the following?: if g € L*(R”") is continuous in a neighborhood of xy € R”, then
(Pyxg)(x) — g(x0) as (x,s) — (x0,0T). Then we obtain (ii) by applying this fact to
g=Py*f— xG;, (P, Jin* S ), which is continuous in a neighborhood of a point xg

in Gy, lies in L™ in view of (2.1.41) with = 1/ ji, and satisfies g(xo) = 0.

We finally prove (2.1.47). Let wi(x,t) = (P * Py, * f)(x) — (P % Fj, ) (x) for k =
1,2,... and consider the harmonic functions w(x,#) 4wy (x,7) on Q. We have that
w(x,1) = wi(x,7) > 0o0n dQ \ (U, N Q) and moreover,

liminf 1)+ t)) > liminf t liminf (& >0
goiminf (lonEwnn) 2 liminf wlno+  liminf | Ghw(n) 2

as the first term on the right is nonnegative and the second one is zero in view of
(ii). From this we will deduce that w(x,z) +=w(x,z) > 0 for all (x,#) € Q and all
k. If this were not the case, then w —wy would take a negative value in Q2 and by
the minimum principle for harmonic functions it should attain its (negative) mini-
mum at some point in U, N Q. Then for some § > 0 and for each k = 1,2, ... there
would exist (xf,7F) in © such that w(x¥,7f) £ wy(xF,#f) < =& and (x¥,7F) would
converge to (xo,0") as [ — oo for some point xg in U, N Q. But this xq lies in Gy},
for some j; contradicting (ii). We now showed that |wi| < w on € for all k and thus
[limg e wi| < won Q. But since lim,_, o+ w(x,s) = 0 for almost all x € U,, N Q, the
same assertion is valid for limy_,.c Wy = Py * f — Py F. This proves (2.1.47). O

Corollary 2.1.8. For any two Schwartz functions @ and © with nonvanishing inte-
gral we have

[[sup @+ £l = || sup @ £[| , ~ || £]] s
>0 >0

Jorall f € ' (R"), with constants depending only on n, p,®, and ©.
Proof. See the discussion after Theorem 2.1.4. O

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:
X—Xo

mN((P§X07R):/Rn(1+’ . ))N Y RY9%(x)|dx.

|a| <N+1

Note that 9ty (¢;0,1) = Ny (0).

Corollary 2.1.9. (a) For any 0 < p < 1, every f € H?(R"), and any ¢ € ./ (R"),
we have

[(£.0)] < () inf A (F)(2), (2.1.49)

2 For a proof see the book’s website: http:/faculty.missouri.edu/~grafakosl/Fourier Analysis.html



