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It follows from the definition of M∗
a( f ;Φ)(z) = supt>0 sup|w−z|<at |(Φt ∗ f )(w)| that

|(Φt ∗ f )(x− y)| ≤ M∗
a( f ;Φ)(z) if z ∈ B(x− y,at) .

But the ball B(x− y,at) is contained in the ball B(x, |y|+at); hence it follows that
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from which we conclude that for all x ∈ Rn we have

M∗∗
b ( f ;Φ)(x)≤ max(1,a−b)

{
M
(
M∗

a( f ;Φ)
n
b
)
(x)
} b

n
.

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy–Littlewood maximal operator M on Lpb/n, we obtain the required conclusion
(2.1.14).

(d) In proving (d) we may replace b by the integer b0 = [b] + 1. Let Φ be a
Schwartz function with integral equal to 1. Applying Lemma 2.1.5 with m = b0, we
write any function ϕ in S (Rn) as

ϕ(y) =
∫ 1

0
(Θ (s) ∗Φs)(y)ds

for some choice of Schwartz functions Θ (s). Then we have

ϕt(y) =
∫ 1

0
((Θ (s))t ∗Φts)(y)ds

for all t > 0. Fix x ∈ Rn. Then for y in B(x, t) we have
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where we applied conclusion (2.1.18) of Lemma 2.1.5. Setting N = b0 = [b]+1, we
obtain for y in B(x, t) and ϕ ∈ S (Rn),

|(ϕt ∗ f )(y)| ≤ 2b0C0(Φ ,b0)Nb0(ϕ)M∗∗
b0
( f ;Φ)(x) .

Taking the supremum over all y in B(x, t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN( f )(x)≤ 2b0C0(Φ ,b0)M∗∗
b0
( f ;Φ)(x) , x ∈ Rn,

where N = b0. This clearly yields (2.1.15) if we set C4 = 2b0C0(Φ ,b0).

(e) We fix an f ∈ S ′(Rn) that satisfies ∥MN( f )∥Lp < ∞ for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ϕ

and we observe that for some positive constant c= cϕ , we have that cϕ is an element
of FN and thus M∗

1( f ;cϕ)≤ MN( f ). Then

cp |(ϕ ∗ f )(x)|p ≤ inf
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which implies that ϕ ∗ f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of H p. We fix a smooth
radial nonnegative compactly supported function θ such that

θ(x) =

{
1 if |x|< 1,
0 if |x|> 2.

We observe that the identity
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is valid for all x ∈ Rn. We set

Φ
(k)(x) =

(
θ(x)−θ(2x)

) 1

(2−2k + |x|2) n+1
2

,
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and we claim that for all bounded tempered distributions f and for all t > 0 we have

Pt ∗ f = (θP)t ∗ f +
Γ ( n+1

2 )

π
n+1

2

∞

∑
k=1

2−k(Φ (k))2kt ∗ f , (2.1.38)

where the series converges in S ′(Rn); see Exercise 2.1.5.
Assuming (2.1.38), we claim that for some fixed constant c0 = c0(n,N), the func-

tions c0 θ P and c0Φ (k) lie in FN uniformly in k = 1,2,3, . . . .
To verify this assertion for |α| ≤ N +1, we apply Leibniz’s rule to write∣∣∣∣∣∂ α
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and this estimate follows from the fact that the function (t2 + |x|2)− n+1

2 is homoge-
neous of degree −n−1 on Rn+1 and smooth on the sphere Sn. These estimates are
uniform in k = 0,1,2, . . . and thus NN(θP)+NN(Φ

(k)) ≤ 1/c0(n,N) for all some
constant c0 = c0(n,N) for all k = 0,1,2, . . . .

Then we obtain

sup
t>0

|Pt ∗ f | ≤ sup
t>0

|(θP)t ∗ f |+ 1
c0

Γ ( n+1
2 )

π
n+1

2

∞

∑
k=1

2−k sup
t>0

∣∣(c0Φ
(k))2kt ∗ f
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≤ C5(n,N)MN( f ) ,

which proves the required conclusion (2.1.16).
We observe that the last estimate also yields the stronger estimate

M∗
1( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤t

|(Pt ∗ f )(y)| ≤C5(n,N)MN( f )(x) . (2.1.39)

It follows that the quasi-norm ∥M∗
1( f ;P)∥Lp(Rn) is also equivalent to ∥ f∥H p . □

Remark 2.1.6. To simplify the understanding of the equivalences just proved, a
first-time reader may wish to define the H p quasi-norm of a distribution f as∥∥ f

∥∥
H p =

∥∥M∗
1( f ;P)

∥∥
Lp

and then study only the implications (a) =⇒ (c), (c) =⇒ (d), (d) =⇒ (e), and
(e) =⇒ (a) in the proof of Theorem 2.1.4. In this way one avoids passing through
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the statement in part (b). For many applications, the identification of ∥ f∥H p with
∥M∗

1( f ;Φ)∥Lp for some Schwartz function Φ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 2.1.4 yields∥∥ f

∥∥
H p(Rn)

≈
∥∥MN( f )

∥∥
Lp(Rn)

,

where N = [ n
p ]+1.

2.1.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 2.1.4. In many appli-
cations we need to be working with dense subspaces of H p. It turns out that both
H p ∩L2 and H p ∩L1 are dense in H p.

Proposition 2.1.7. Let 0 < p ≤ 1 and let r satisfy p ≤ r ≤ ∞. Then Lr ∩H p is dense
in H p. In particular, H p ∩L2 and H p ∩L1 are dense in H p.

Proof. Let f be a distribution in H p(Rn). Recall the Poisson kernel P(x) and set
N = [ n

p ]+1. For any fixed x ∈ Rn and t > 0 we have

|(Pt ∗ f )(x)| ≤ M∗
1( f ;P)(y)≤CMN( f )(y) (2.1.40)

for any |y− x| ≤ t. Indeed, the first estimate in (2.1.40) follows from the definition
of M∗

1( f ;P), and the second estimate by (2.1.39). Raising (2.1.40) to the power p
and averaging over the ball B(x, t), we obtain

|(Pt ∗ f )(x)|p ≤ Cp

vntn

∫
B(x,t)

MN( f )(y)p dy ≤ Cp
1

tn

∥∥ f∥p
H p . (2.1.41)

It follows that the function Pt ∗ f is in L∞(Rn) with norm at most a constant multiple
of t−n/p

∥∥ f∥H p . Moreover, this function is also in Lp(Rn), since it is controlled by
M( f ;P). Therefore, the functions Pt ∗ f lie in Lr(Rn) for all r with p ≤ r ≤ ∞. It
remains to show that Pt ∗ f also lie in H p and that Pt ∗ f → f in H p as t → 0.

To see that Pt ∗ f lies in H p, we use the semigroup formula Pt ∗Ps = Pt+s for the
Poisson kernel, which is a consequence of the fact that P̂t(ξ ) = e−2πt|ξ | by applying
the Fourier transform. Therefore, for any t > 0 we have

sup
s>0

|Ps ∗Pt ∗ f |= sup
s>0

|Ps+t ∗ f | ≤ sup
s>0

|Ps ∗ f | ,

which implies that ∥∥Pt ∗ f
∥∥

H p ≤
∥∥ f
∥∥

H p

for all t > 0. We now need to show that Pt ∗ f → f in H p as t → 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup
s>0

|Ps ∗Pt ∗ f −Ps ∗ f | ≤ 2sup
s>0

|Ps ∗ f | ∈ Lp(Rn), (2.1.42)
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which will be a consequence of the semigroup formula Ps+t = Ps ∗Pt and the a.e.
convergence property (2.1.43) of the subsequent theorem. □

Theorem: (A. Calderón) Let 0 < p < ∞. The for any f ∈ H p(Rn), the harmonic
function (x,s) 7→ (Ps ∗ f )(x) on Rn+1

+ satisfies for almost all x ∈ Rn

sup
s>0

|(Pt ∗Ps ∗ f −Ps ∗ f )(x)| → 0 as t → 0. (2.1.43)

Proof. To show that (x,s) 7→ (Ps ∗ f )(x) is harmonic on Rn+1
+ we fix a function

η0 whose Fourier transform is supported in a ball centered at 0 and we let η∞ =
1−η0. Then Ps ∗ f = Ps ∗ (η0 ∗ f )+(Ps ∗η∞)∗ f . The convolutions are well defined
as Ps ∗ η∞ is a Schwartz function and η0 ∗ f is a bounded function, since f is a
bounded distribution. Let ∆ be the Laplacian in both x∈Rn and s> 0. Then we have
∆(Ps ∗ f ) = ∆(Ps)∗ (η0 ∗ f )+∆(Ps ∗η∞)∗ f but ∆(Ps) = 0 and also ∆(Ps ∗η∞) = 0,
which easily follows by applying ∆ to (Ps ∗η∞)(x) =

∫
Rn e−s2π|ξ |η̂∞(ξ )e2πix·ξ dξ .

We begin the proof of (2.1.43) by fixing ε > 0. In view of (2.1.41), we have

sup
x∈Rn

sup
s>M

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| ≤C′M−n/p

and we pick M such that C′M−n/p < ε/2. It will suffice to show that there is a subset
E of Rn of Lebesgue measure zero such that for all x ∈ Rn \E we have

sup
0<s≤M

|(Pt+s ∗ f )(x)− (Ps ∗ f )(x)|< ε/2, (2.1.44)

provided t is sufficiently close to zero (depending on x). We claim that there is set
of measure zero E such that for all x ∈ Rn \E

(Ps ∗ f )(x) converges as s → 0+. (2.1.45)

Assuming (2.1.45) we obtain (2.1.44) via the following argument. For x ∈ Rn \E
the function s 7→ (Ps ∗ f )(x) is continuous on (0,M] and has a limit as s → 0, hence
it has a uniformly continuous extension on [0,M]. Then for x ∈ Rn \E and for the
given ε > 0 there is a tx > 0 such that (2.1.44) holds for all t satisfying 0 < t < tx.

We therefore focus on (2.1.45). Since ∥MN( f )∥Lp < ∞, there is a null set E ′

consisting of all x ∈ Rn for which MN( f )(x) = ∞. We begin by observing that, as a
consequence of (2.1.39), for every x ∈ Rn \E ′ there is a constant Cx < ∞ such that

sup
t>0

sup
y∈Rn

|y−x|≤t

|(Pt ∗ f )(y)| ≤Cx ,

in other words, the harmonic function (y, t) 7→ u(y, t) = (Pt ∗ f )(y) is bounded on the
cone Γx = {(z,s) ∈ Rn ×R+ : |x− z| < s}. Letting Um = {x ∈ Rn : |u| ≤ m on Γx}
for m ∈ Z+ we have

⋃
∞
m=1 Um = Rn \E ′, and so it suffices to prove (2.1.45) for

almost all x in a given Um. Moreover, as Rn is a countable union of cubes, we may
also assume that the given Um is intersected with a fixed cube Q. Having made all
these assumptions, for j ∈ Z+ we define sets

G j =
⋃

y∈Um∩Q

B
(
y, 1

j

)
= Rn ∩

⋃
y∈Um∩Q

(Γy − 1
j ),
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where for a given cone Γy and δ > 0, Γy −δ denotes the set {(z,s−δ ) : (z,s) ∈ Γy},
i.e., the vertical downwards translation of Γy by the quantity δ . Notice that all G j
( j = 1,2, . . . ) are open sets contained in a fixed compact set Q′.

Consider the sequence of functions Fj(x) = χG j(x)(P1/ j ∗ f )(x), j = 1,2, . . . . We
claim that these functions bounded by mχQ′ uniformly in j. Indeed, given x ∈ G j we
have x∈Γy− 1

j for some y∈Um∩Q, thus (x, 1
j )∈Γy and |(P1/ j ∗ f )(x)| ≤m. Thus the

functions Fj lie in a multiple of the unit ball of L2(Rn) and by the Banach-Alaoglou
theorem there is a subsequence { jk}∞

k=1 of Z+ and a function F ∈ L2(Rn) such that
Fjk → F weakly in L2. In particular, this implies that Ps ∗Fjk → Ps ∗F as k → ∞.
For any s> 0 and x ∈Tn we write (Ps ∗ f )(x) = (Ps ∗ f )(x)−(Ps ∗F)(x)+(Ps ∗F)(x)
and to prove (2.1.45), we will use that1

(Ps ∗F)(x)−F(x)→ 0 for almost all x ∈ Rn, (2.1.46)

[which also holds for functions F0 ∈ L∞(Rn)], and

(Ps ∗ f )(x)− (Ps ∗F)(x)→ 0 for almost all x ∈ Rn. (2.1.47)

Now consider the harmonic function on Rn+1
+ given by

w(x, t) = 2mt + c
∫

Rn\(Um∩Q)
Pt(x− y)dy

for some c > 0 to be determined. Define an open set

Ω =
⋃

y∈Um∩Q

Γy ∩{(z, t) ∈ Rn+1
+ : t < 1} .

We claim that
w(x, t)≥ 2m on ∂Ω \ (Um ∩Q). (2.1.48)

and that the limit of w(x, t) exists as t → 0+ for almost all x ∈ Um ∩Q; to see this
last assertion we apply (2.1.46) to the bounded function F0 = χRn\(Um∩Q).

We now prove (2.1.48). This assertion is obvious on the top part of the boundary
of Ω . Let (x0, t0) ∈ ∂Ω with 0 < t0 < 1. For (x0, t0) in Rn+1

+ consider the inverted
cone Γ (x0,t0) = {(y,s) ∈ Rn+1

+ : |y − x0| < t0 − s} which satisfies Γ (x0,t0) ∩ Rn =
B(x0, t0). We claim that B(x0, t0)∩Um∩Q= /0; indeed, if B(x0, t0)∩Um∩Q contained
a point y0, then x0 would lie in Γy0 ∩{(z, t)∈Rn+1

+ : t < 1} which is impossible since
(x0, t0) lies in the boundary of Ω . Then

w(x0, t0)≥
∫

Rn\(Um∩Q)

cPt0(x0−y)dy≥
∫

|x0−y|≤t0

cPt0(x0−y)dy= c
Γ ( n+1

2 )

π
n+1

2

∫ 1

0

ωn−1rn−1dr

(1+ r2)
n+1

2

and this can be made to be larger than 2m by choosing c = c(n,m) suitably. Thus
(2.1.48) also holds on the non horizontal part of the boundary of Ω .

We finally focus on the proof of (2.1.47). We observe that (Ps∗ f )(x)−(Ps∗F)(x)
is equal to the pointwise limit of (Ps ∗P1/ jk ∗ f )(x)− (Ps ∗Fjk)(x) as k → ∞ for all
x ∈ Rn and s > 0. We claim that for every jk we have

1 For a proof see the book’s website: http://faculty.missouri.edu/∼grafakosl/FourierAnalysis.html
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(i) |(Ps ∗P1/ jk ∗ f )(x)− (Ps ∗Fjk)(x)| ≤ 2m for all (x,s) ∈ Ω ,
(ii) |(Ps ∗P1/ jk ∗ f )(x)−(Ps ∗Fjk)(x)|→ 0 as Ω ∋ (x,s)→ (x0,0+), where x0 ∈G2 jk .

To prove (i) note that for a given (x,s) ∈ Ω , there is a y ∈ Um ∩Q such that
(x,s)∈Γy. Then (x,s+1/ jk)∈Γy, hence |(Ps ∗P1/ jk ∗ f )(x)|= |(Ps+1/ jk ∗ f )(x)| ≤ m
as well. Moreover, ∥Fjk∥L∞ ≤ m, thus |(Ps ∗Fjk)(x)| ≤ m for any x ∈ Rn. For (ii) we
use the following2: if g ∈ L∞(Rn) is continuous in a neighborhood of x0 ∈ Rn, then
(Ps ∗g)(x)→ g(x0) as (x,s)→ (x0,0+). Then we obtain (ii) by applying this fact to
g = P1/ jk ∗ f − χG jk

(P1/ jk ∗ f ), which is continuous in a neighborhood of a point x0

in G2 jk , lies in L∞ in view of (2.1.41) with t = 1/ jk, and satisfies g(x0) = 0.
We finally prove (2.1.47). Let wk(x, t) = (Pt ∗P1/ jk ∗ f )(x)− (Pt ∗Fjk)(x) for k =

1,2, . . . and consider the harmonic functions w(x, t)±wk(x, t) on Ω . We have that
w(x, t)±wk(x, t)≥ 0 on ∂Ω \ (Um ∩Q) and moreover,

liminf
Ω∋(x,t)→(x0,0)

(
w(x, t)±wk(x, t)

)
≥ liminf

Ω∋(x,t)→(x0,0)
w(x, t)+ liminf

Ω∋(x,t)→(x0,0)
(±wk(x, t))≥ 0

as the first term on the right is nonnegative and the second one is zero in view of
(ii). From this we will deduce that w(x, t)±wk(x, t) ≥ 0 for all (x, t) ∈ Ω and all
k. If this were not the case, then w−wk would take a negative value in Ω and by
the minimum principle for harmonic functions it should attain its (negative) mini-
mum at some point in Um ∩Q. Then for some δ > 0 and for each k = 1,2, . . . there
would exist (xk

l , t
k
l ) in Ω such that w(xk

l , t
k
l )±wk(xk

l , t
k
l ) < −δ and (xk

l , t
k
l ) would

converge to (x0,0+) as l → ∞ for some point x0 in Um ∩Q. But this x0 lies in G2 jk
for some jk contradicting (ii). We now showed that |wk| ≤ w on Ω for all k and thus
| limk→∞ wk| ≤ w on Ω . But since lims→0+ w(x,s) = 0 for almost all x ∈Um ∩Q, the
same assertion is valid for limk→∞ wk = Ps ∗ f −Ps ∗F . This proves (2.1.47). □

Corollary 2.1.8. For any two Schwartz functions Φ and Θ with nonvanishing inte-
gral we have ∥∥sup

t>0
|Θt ∗ f |

∥∥
Lp ≈

∥∥sup
t>0

|Φt ∗ f |
∥∥

Lp ≈
∥∥ f
∥∥

H p

for all f ∈ S ′(Rn), with constants depending only on n, p,Φ , and Θ .

Proof. See the discussion after Theorem 2.1.4. □

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:

NN(ϕ;x0,R) =
∫

Rn

(
1+
∣∣∣x− x0

R

∣∣∣)N
∑

|α|≤N+1
R|α||∂ α

ϕ(x)|dx .

Note that NN(ϕ;0,1) =NN(ϕ).

Corollary 2.1.9. (a) For any 0 < p ≤ 1, every f ∈ H p(Rn), and any ϕ ∈ S (Rn),
we have ∣∣〈 f ,ϕ

〉∣∣≤NN(ϕ) inf
|z|≤1

MN( f )(z) , (2.1.49)

2 For a proof see the book’s website: http://faculty.missouri.edu/∼grafakosl/FourierAnalysis.html


