2 Hardy Spaces, Besov Spaces, and Triebel-Lizorkin Spaces

It follows from the definition of $M_a^*(f; \Phi)(z) = \sup_{t>0} \sup_{|w-z| \le at} |(\Phi_t * f)(w)|$ that

$$|(\Phi_t * f)(x - y)| \le M_a^*(f; \Phi)(z) \qquad \text{if } z \in B(x - y, at).$$

But the ball B(x - y, at) is contained in the ball B(x, |y| + at); hence it follows that

$$\begin{split} |(\boldsymbol{\Phi}_{t}*f)(x-y)|^{\frac{n}{b}} &\leq \frac{1}{|B(x-y,at)|} \int_{B(x-y,at)} M_{a}^{*}(f;\boldsymbol{\Phi})(z)^{\frac{n}{b}} dz \\ &\leq \frac{1}{|B(x-y,at)|} \int_{B(x,|y|+at)} M_{a}^{*}(f;\boldsymbol{\Phi})(z)^{\frac{n}{b}} dz \\ &\leq \left(\frac{|y|+at}{at}\right)^{n} M(M_{a}^{*}(f;\boldsymbol{\Phi})^{\frac{n}{b}})(x) \\ &\leq \max(1,a^{-n}) \left(\frac{|y|}{t}+1\right)^{n} M(M_{a}^{*}(f;\boldsymbol{\Phi})^{\frac{n}{b}})(x) \,, \end{split}$$

from which we conclude that for all $x \in \mathbf{R}^n$ we have

$$M_b^{**}(f; \Phi)(x) \le \max(1, a^{-b}) \left\{ M \left(M_a^*(f; \Phi)^{\frac{n}{b}} \right)(x) \right\}^{\frac{b}{n}}.$$

Raising to the power *p* and using the fact that p > n/b and the boundedness of the Hardy–Littlewood maximal operator *M* on $L^{pb/n}$, we obtain the required conclusion (2.1.14).

(d) In proving (d) we may replace b by the integer $b_0 = [b] + 1$. Let Φ be a Schwartz function with integral equal to 1. Applying Lemma 2.1.5 with $m = b_0$, we write any function φ in $\mathscr{S}(\mathbb{R}^n)$ as

$$\varphi(y) = \int_0^1 (\Theta^{(s)} * \Phi_s)(y) \, ds$$

for some choice of Schwartz functions $\Theta^{(s)}$. Then we have

$$\varphi_t(y) = \int_0^1 ((\boldsymbol{\Theta}^{(s)})_t * \boldsymbol{\Phi}_{ts})(y) \, ds$$

for all t > 0. Fix $x \in \mathbf{R}^n$. Then for y in B(x,t) we have

a1 a

$$\begin{split} |(\varphi_{t}*f)(\mathbf{y})| &\leq \int_{0}^{1} \int_{\mathbf{R}^{n}} |(\boldsymbol{\Theta}^{(s)})_{t}(z)| \, |(\Phi_{ts}*f)(\mathbf{y}-z)| \, dz \, ds \\ &\leq \int_{0}^{1} \int_{\mathbf{R}^{n}} |(\boldsymbol{\Theta}^{(s)})_{t}(z)| \, M_{b_{0}}^{**}(f;\boldsymbol{\Phi})(x) \left(\frac{|x-(\mathbf{y}-z)|}{st}+1\right)^{b_{0}} \, dz \, ds \\ &\leq \int_{0}^{1} s^{-b_{0}} \int_{\mathbf{R}^{n}} |(\boldsymbol{\Theta}^{(s)})_{t}(z)| \, M_{b_{0}}^{**}(f;\boldsymbol{\Phi})(x) \left(\frac{|x-\mathbf{y}|}{t}+\frac{|z|}{t}+1\right)^{b_{0}} \, dz \, ds \\ &\leq 2^{b_{0}} M_{b_{0}}^{**}(f;\boldsymbol{\Phi})(x) \int_{0}^{1} s^{-b_{0}} \int_{\mathbf{R}^{n}} |\boldsymbol{\Theta}^{(s)}(w)| \left(|w|+1\right)^{b_{0}} \, dw \, ds \\ &\leq 2^{b_{0}} M_{b_{0}}^{**}(f;\boldsymbol{\Phi})(x) \int_{0}^{1} s^{-b_{0}} C_{0}(\boldsymbol{\Phi},b_{0}) \, s^{b_{0}} \, \mathfrak{N}_{b_{0}}(\boldsymbol{\varphi}) \, ds \, , \end{split}$$

2.1 Hardy Spaces

where we applied conclusion (2.1.18) of Lemma 2.1.5. Setting $N = b_0 = [b] + 1$, we obtain for *y* in B(x,t) and $\varphi \in \mathscr{S}(\mathbb{R}^n)$,

$$|(\varphi_t * f)(y)| \le 2^{b_0} C_0(\Phi, b_0) \mathfrak{N}_{b_0}(\varphi) M_{b_0}^{**}(f; \Phi)(x).$$

Taking the supremum over all *y* in B(x,t), over all t > 0, and over all φ in \mathscr{F}_N , we obtain the pointwise estimate

$$\mathcal{M}_{N}(f)(x) \leq 2^{b_{0}}C_{0}(\Phi, b_{0})M_{b_{0}}^{**}(f; \Phi)(x), \qquad x \in \mathbf{R}^{n},$$

where $N = b_0$. This clearly yields (2.1.15) if we set $C_4 = 2^{b_0}C_0(\Phi, b_0)$.

(e) We fix an $f \in \mathscr{S}'(\mathbf{R}^n)$ that satisfies $||\mathscr{M}_N(f)||_{L^p} < \infty$ for some fixed positive integer *N*. To show that *f* is a bounded distribution, we fix a Schwartz function φ and we observe that for some positive constant $c = c_{\varphi}$, we have that $c \varphi$ is an element of \mathscr{F}_N and thus $M_1^*(f; c \varphi) \le \mathscr{M}_N(f)$. Then

$$\begin{split} c^{p} \left| (\boldsymbol{\varphi} \ast f)(x) \right|^{p} &\leq \inf_{|y-x| \leq 1} \sup_{|z-y| \leq 1} \left| (c \, \boldsymbol{\varphi} \ast f)(z) \right|^{p} \\ &\leq \inf_{|y-x| \leq 1} M_{1}^{\ast}(f; c \, \boldsymbol{\varphi})(y)^{p} \\ &\leq \frac{1}{\nu_{n}} \int_{|y-x| \leq 1} M_{1}^{\ast}(f; c \, \boldsymbol{\varphi})(y)^{p} \, dy \\ &\leq \frac{1}{\nu_{n}} \int_{\mathbf{R}^{n}} M_{1}^{\ast}(f; c \, \boldsymbol{\varphi})(y)^{p} \, dy \\ &\leq \frac{1}{\nu_{n}} \int_{\mathbf{R}^{n}} \mathcal{M}_{N}(f)(y)^{p} \, dy < \infty, \end{split}$$

which implies that $\varphi * f$ is a bounded function. We conclude that f is a bounded distribution. We now proceed to show that f is an element of H^p . We fix a smooth radial nonnegative compactly supported function θ such that

$$\theta(x) = \begin{cases} 1 & \text{if } |x| < 1, \\ 0 & \text{if } |x| > 2. \end{cases}$$

We observe that the identity

$$P(x) = P(x)\theta(x) + \sum_{k=1}^{\infty} \left(\theta(2^{-k}x)P(x) - \theta(2^{-(k-1)}x)P(x)\right)$$

= $P(x)\theta(x) + \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \sum_{k=1}^{\infty} 2^{-k} \left(\frac{\theta(\cdot) - \theta(2(\cdot))}{(2^{-2k} + |\cdot|^2)^{\frac{n+1}{2}}}\right)_{2^k}(x)$

is valid for all $x \in \mathbf{R}^n$. We set

$$\Phi^{(k)}(x) = \left(\theta(x) - \theta(2x)\right) \frac{1}{(2^{-2k} + |x|^2)^{\frac{n+1}{2}}},$$

and we claim that for all bounded tempered distributions f and for all t > 0 we have

$$P_t * f = (\theta P)_t * f + \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \sum_{k=1}^{\infty} 2^{-k} (\Phi^{(k)})_{2^{k_t}} * f, \qquad (2.1.38)$$

where the series converges in $\mathscr{S}'(\mathbf{R}^n)$; see Exercise 2.1.5.

Assuming (2.1.38), we claim that for some fixed constant $c_0 = c_0(n,N)$, the functions $c_0 \theta P$ and $c_0 \Phi^{(k)}$ lie in \mathscr{F}_N uniformly in k = 1, 2, 3, ...

To verify this assertion for $|\alpha| \le N + 1$, we apply Leibniz's rule to write

$$\begin{aligned} \left| \partial^{\alpha} \left[\frac{\theta(x) - \theta(2x)}{(2^{-2k} + |x|^2)^{\frac{n+1}{2}}} \right] \right| &= \left| \sum_{\beta \le \alpha} c_{\alpha,\beta} \partial_x^{\alpha-\beta} \left(\theta(x) - \theta(2x) \right) \partial_x^{\beta} \left(\frac{1}{(2^{-2k} + |x|^2)^{\frac{n+1}{2}}} \right) \right| \\ &\leq \sum_{\beta \le \alpha} |c_{\alpha,\beta}'| \chi_{\frac{1}{2} \le |x| \le 2} \frac{K_{\beta}}{(2^{-2k} + |x|^2)^{\frac{n+1}{2} + \frac{|\beta|}{2}}} \,, \end{aligned}$$

where

$$K_eta = \sup_{\substack{m, \gamma \ m+|\gamma| = |eta|}} \sup_{\substack{t, x \ t^2+|x|^2}} \left| rac{\partial^m}{\partial t^m} rac{\partial^\gamma}{\partial x^\gamma} rac{1}{(t^2+|x|^2)^{rac{n+1}{2}}}
ight|,$$

and this estimate follows from the fact that the function $(t^2 + |x|^2)^{-\frac{n+1}{2}}$ is homogeneous of degree -n-1 on \mathbb{R}^{n+1} and smooth on the sphere \mathbb{S}^n . These estimates are uniform in $k = 0, 1, 2, \ldots$ and thus $\mathfrak{N}_N(\theta P) + \mathfrak{N}_N(\Phi^{(k)}) \leq 1/c_0(n,N)$ for all some constant $c_0 = c_0(n,N)$ for all $k = 0, 1, 2, \ldots$

Then we obtain

$$\begin{split} \sup_{t>0} |P_t * f| &\leq \sup_{t>0} |(\theta P)_t * f| + \frac{1}{c_0} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \sum_{k=1}^{\infty} 2^{-k} \sup_{t>0} |(c_0 \Phi^{(k)})_{2^k t} * f| \\ &\leq C_5(n, N) \mathscr{M}_N(f) \,, \end{split}$$

which proves the required conclusion (2.1.16).

We observe that the last estimate also yields the stronger estimate

$$M_1^*(f;P)(x) = \sup_{t>0} \sup_{\substack{y \in \mathbf{R}^n \\ |y-x| \le t}} |(P_t * f)(y)| \le C_5(n,N)\mathcal{M}_N(f)(x).$$
(2.1.39)

It follows that the quasi-norm $||M_1^*(f; P)||_{L^p(\mathbf{R}^n)}$ is also equivalent to $||f||_{H^p}$. \Box

Remark 2.1.6. To simplify the understanding of the equivalences just proved, a first-time reader may wish to define the H^p quasi-norm of a distribution f as

$$||f||_{H^p} = ||M_1^*(f;P)||_{L^p}$$

and then study only the implications (a) \implies (c), (c) \implies (d), (d) \implies (e), and (e) \implies (a) in the proof of Theorem 2.1.4. In this way one avoids passing through

2.1 Hardy Spaces

the statement in part (b). For many applications, the identification of $||f||_{H^p}$ with $||M_1^*(f; \Phi)||_{L^p}$ for some Schwartz function Φ (with nonvanishing integral) suffices. We also remark that the proof of Theorem 2.1.4 yields

$$\left\|f\right\|_{H^{p}(\mathbf{R}^{n})} \approx \left\|\mathscr{M}_{N}(f)\right\|_{L^{p}(\mathbf{R}^{n})},$$

where $N = \left[\frac{n}{p}\right] + 1$.

2.1.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 2.1.4. In many applications we need to be working with dense subspaces of H^p . It turns out that both $H^p \cap L^2$ and $H^p \cap L^1$ are dense in H^p .

Proposition 2.1.7. Let 0 and let <math>r satisfy $p \le r \le \infty$. Then $L^r \cap H^p$ is dense in H^p . In particular, $H^p \cap L^2$ and $H^p \cap L^1$ are dense in H^p .

Proof. Let *f* be a distribution in $H^p(\mathbb{R}^n)$. Recall the Poisson kernel P(x) and set $N = [\frac{n}{p}] + 1$. For any fixed $x \in \mathbb{R}^n$ and t > 0 we have

$$(P_t * f)(x) \le M_1^*(f; P)(y) \le C\mathcal{M}_N(f)(y)$$
(2.1.40)

for any $|y-x| \le t$. Indeed, the first estimate in (2.1.40) follows from the definition of $M_1^*(f; P)$, and the second estimate by (2.1.39). Raising (2.1.40) to the power p and averaging over the ball B(x, t), we obtain

$$|(P_t * f)(x)|^p \le \frac{C^p}{v_n t^n} \int_{B(x,t)} \mathscr{M}_N(f)(y)^p \, dy \le \frac{C_1^p}{t^n} \left\| f \right\|_{H^p}^p.$$
(2.1.41)

It follows that the function $P_t * f$ is in $L^{\infty}(\mathbb{R}^n)$ with norm at most a constant multiple of $t^{-n/p} ||f||_{H^p}$. Moreover, this function is also in $L^p(\mathbb{R}^n)$, since it is controlled by M(f; P). Therefore, the functions $P_t * f$ lie in $L^r(\mathbb{R}^n)$ for all r with $p \le r \le \infty$. It remains to show that $P_t * f$ also lie in H^p and that $P_t * f \to f$ in H^p as $t \to 0$.

To see that $P_t * f$ lies in H^p , we use the semigroup formula $P_t * P_s = P_{t+s}$ for the Poisson kernel, which is a consequence of the fact that $\hat{P}_t(\xi) = e^{-2\pi t |\xi|}$ by applying the Fourier transform. Therefore, for any t > 0 we have

$$\sup_{s>0} |P_s * P_t * f| = \sup_{s>0} |P_{s+t} * f| \le \sup_{s>0} |P_s * f|,$$

which implies that

$$\left\|P_t * f\right\|_{H^p} \le \left\|f\right\|_{H^p}$$

for all t > 0. We now need to show that $P_t * f \to f$ in H^p as $t \to 0$. This will be a consequence of the Lebesgue dominated convergence theorem once we know that

$$\sup_{s>0} |P_s * P_t * f - P_s * f| \le 2 \sup_{s>0} |P_s * f| \in L^p(\mathbf{R}^n),$$
(2.1.42)

which will be a consequence of the semigroup formula $P_{s+t} = P_s * P_t$ and the a.e. convergence property (2.1.43) of the subsequent theorem.

Theorem: (A. Calderón) Let $0 . The for any <math>f \in H^p(\mathbb{R}^n)$, the harmonic function $(x, s) \mapsto (P_s * f)(x)$ on \mathbb{R}^{n+1}_+ satisfies for almost all $x \in \mathbb{R}^n$

$$\sup_{s>0} |(P_t * P_s * f - P_s * f)(x)| \to 0 \quad \text{as} \quad t \to 0.$$
 (2.1.43)

Proof. To show that $(x,s) \mapsto (P_s * f)(x)$ is harmonic on \mathbb{R}^{n+1}_+ we fix a function η_0 whose Fourier transform is supported in a ball centered at 0 and we let $\eta_{\infty} = 1 - \eta_0$. Then $P_s * f = P_s * (\eta_0 * f) + (P_s * \eta_{\infty}) * f$. The convolutions are well defined as $P_s * \eta_{\infty}$ is a Schwartz function and $\eta_0 * f$ is a bounded function, since f is a bounded distribution. Let Δ be the Laplacian in both $x \in \mathbb{R}^n$ and s > 0. Then we have $\Delta(P_s * f) = \Delta(P_s) * (\eta_0 * f) + \Delta(P_s * \eta_{\infty}) * f$ but $\Delta(P_s) = 0$ and also $\Delta(P_s * \eta_{\infty}) = 0$, which easily follows by applying Δ to $(P_s * \eta_{\infty})(x) = \int_{\mathbb{R}^n} e^{-s2\pi |\xi|} \widehat{\eta_{\infty}}(\xi) e^{2\pi i x \cdot \xi} d\xi$.

We begin the proof of (2.1.43) by fixing $\varepsilon > 0$. In view of (2.1.41), we have

$$\sup_{\mathbf{r}\in\mathbf{R}^n}\sup_{s>M}|(P_s*P_t*f-P_s*f)(x)|\leq C'M^{-n/p}$$

and we pick *M* such that $C'M^{-n/p} < \varepsilon/2$. It will suffice to show that there is a subset *E* of \mathbb{R}^n of Lebesgue measure zero such that for all $x \in \mathbb{R}^n \setminus E$ we have

$$\sup_{0 < s \le M} |(P_{t+s} * f)(x) - (P_s * f)(x)| < \varepsilon/2, \tag{2.1.44}$$

provided *t* is sufficiently close to zero (depending on *x*). We claim that there is set of measure zero *E* such that for all $x \in \mathbf{R}^n \setminus E$

$$(P_s * f)(x)$$
 converges as $s \to 0^+$. (2.1.45)

Assuming (2.1.45) we obtain (2.1.44) via the following argument. For $x \in \mathbb{R}^n \setminus E$ the function $s \mapsto (P_s * f)(x)$ is continuous on (0, M] and has a limit as $s \to 0$, hence it has a uniformly continuous extension on [0, M]. Then for $x \in \mathbb{R}^n \setminus E$ and for the given $\varepsilon > 0$ there is a $t_x > 0$ such that (2.1.44) holds for all t satisfying $0 < t < t_x$.

We therefore focus on (2.1.45). Since $\|\mathscr{M}_N(f)\|_{L^p} < \infty$, there is a null set E' consisting of all $x \in \mathbb{R}^n$ for which $\mathscr{M}_N(f)(x) = \infty$. We begin by observing that, as a consequence of (2.1.39), for every $x \in \mathbb{R}^n \setminus E'$ there is a constant $C_x < \infty$ such that

$$\sup_{t>0} \sup_{\substack{y \in \mathbf{R}^n \\ |y-x| \le t}} |(P_t * f)(y)| \le C_x$$

in other words, the harmonic function $(y,t) \mapsto u(y,t) = (P_t * f)(y)$ is bounded on the cone $\Gamma_x = \{(z,s) \in \mathbb{R}^n \times \mathbb{R}^+ : |x-z| < s\}$. Letting $U_m = \{x \in \mathbb{R}^n : |u| \le m \text{ on } \Gamma_x\}$ for $m \in \mathbb{Z}^+$ we have $\bigcup_{m=1}^{\infty} U_m = \mathbb{R}^n \setminus E'$, and so it suffices to prove (2.1.45) for almost all x in a given U_m . Moreover, as \mathbb{R}^n is a countable union of cubes, we may also assume that the given U_m is intersected with a fixed cube Q. Having made all these assumptions, for $j \in \mathbb{Z}^+$ we define sets

$$G_j = \bigcup_{y \in U_m \cap Q} B(y, \frac{1}{j}) = \mathbf{R}^n \cap \bigcup_{y \in U_m \cap Q} (\Gamma_y - \frac{1}{j}),$$

2.1 Hardy Spaces

where for a given cone Γ_y and $\delta > 0$, $\Gamma_y - \delta$ denotes the set $\{(z, s - \delta) : (z, s) \in \Gamma_y\}$, i.e., the vertical downwards translation of Γ_y by the quantity δ . Notice that all G_j (j = 1, 2, ...) are open sets contained in a fixed compact set Q'.

Consider the sequence of functions $F_j(x) = \chi_{G_j}(x)(P_{1/j} * f)(x)$, j = 1, 2, ... We claim that these functions bounded by $m\chi_{Q'}$ uniformly in j. Indeed, given $x \in G_j$ we have $x \in \Gamma_y - \frac{1}{j}$ for some $y \in U_m \cap Q$, thus $(x, \frac{1}{j}) \in \Gamma_y$ and $|(P_{1/j} * f)(x)| \le m$. Thus the functions F_j lie in a multiple of the unit ball of $L^2(\mathbb{R}^n)$ and by the Banach-Alaoglou theorem there is a subsequence $\{j_k\}_{k=1}^{\infty}$ of \mathbb{Z}^+ and a function $F \in L^2(\mathbb{R}^n)$ such that $F_{j_k} \to F$ weakly in L^2 . In particular, this implies that $P_s * F_{j_k} \to P_s * F$ as $k \to \infty$. For any s > 0 and $x \in \mathbb{T}^n$ we write $(P_s * f)(x) = (P_s * f)(x) - (P_s * F)(x) + (P_s * F)(x)$ and to prove (2.1.45), we will use that¹

$$(P_s * F)(x) - F(x) \to 0$$
 for almost all $x \in \mathbf{R}^n$, (2.1.46)

[which also holds for functions $F_0 \in L^{\infty}(\mathbf{R}^n)$], and

$$(P_s * f)(x) - (P_s * F)(x) \to 0$$
 for almost all $x \in \mathbf{R}^n$. (2.1.47)

Now consider the harmonic function on \mathbf{R}^{n+1}_+ given by

$$w(x,t) = 2mt + c \int_{\mathbf{R}^n \setminus (U_m \cap Q)} P_t(x-y) \, dy$$

for some c > 0 to be determined. Define an open set

$$\Omega = \bigcup_{y \in U_m \cap Q} \Gamma_y \cap \{(z,t) \in \mathbf{R}^{n+1}_+ : t < 1\}.$$

We claim that

$$w(x,t) \ge 2m$$
 on $\partial \Omega \setminus (U_m \cap Q)$. (2.1.48)

and that the limit of w(x,t) exists as $t \to 0^+$ for almost all $x \in U_m \cap Q$; to see this last assertion we apply (2.1.46) to the bounded function $F_0 = \chi_{\mathbf{R}^n \setminus (U_m \cap Q)}$.

We now prove (2.1.48). This assertion is obvious on the top part of the boundary of Ω . Let $(x_0, t_0) \in \partial \Omega$ with $0 < t_0 < 1$. For (x_0, t_0) in \mathbb{R}^{n+1}_+ consider the inverted cone $\Gamma^{(x_0, t_0)} = \{(y, s) \in \mathbb{R}^{n+1}_+ : |y - x_0| < t_0 - s\}$ which satisfies $\Gamma^{(x_0, t_0)} \cap \mathbb{R}^n = B(x_0, t_0)$. We claim that $B(x_0, t_0) \cap U_m \cap Q = \emptyset$; indeed, if $B(x_0, t_0) \cap U_m \cap Q$ contained a point y_0 , then x_0 would lie in $\Gamma_{y_0} \cap \{(z, t) \in \mathbb{R}^{n+1}_+ : t < 1\}$ which is impossible since (x_0, t_0) lies in the boundary of Ω . Then

$$w(x_0,t_0) \ge \int_{\mathbf{R}^n \setminus (U_m \cap Q)} c P_{t_0}(x_0 - y) dy \ge \int_{|x_0 - y| \le t_0} c P_{t_0}(x_0 - y) dy = c \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_0^1 \frac{\omega_{n-1}r^{n-1}dr}{(1 + r^2)^{\frac{n+1}{2}}}$$

and this can be made to be larger than 2m by choosing c = c(n,m) suitably. Thus (2.1.48) also holds on the non horizontal part of the boundary of Ω .

We finally focus on the proof of (2.1.47). We observe that $(P_s * f)(x) - (P_s * F)(x)$ is equal to the pointwise limit of $(P_s * P_{1/j_k} * f)(x) - (P_s * F_{j_k})(x)$ as $k \to \infty$ for all $x \in \mathbf{R}^n$ and s > 0. We claim that for every j_k we have

¹ For a proof see the book's website: http://faculty.missouri.edu/~grafakosl/FourierAnalysis.html

2 Hardy Spaces, Besov Spaces, and Triebel-Lizorkin Spaces

- (i) $|(P_s * P_{1/j_k} * f)(x) (P_s * F_{j_k})(x)| \le 2m$ for all $(x, s) \in \Omega$,
- (ii) $|(P_s * P_{1/j_k} * f)(x) (P_s * F_{j_k})(x)| \to 0 \text{ as } \Omega \ni (x,s) \to (x_0,0^+), \text{ where } x_0 \in \overline{G_{2j_k}}.$

To prove (i) note that for a given $(x,s) \in \Omega$, there is a $y \in U_m \cap Q$ such that $(x,s) \in \Gamma_y$. Then $(x,s+1/j_k) \in \Gamma_y$, hence $|(P_s * P_{1/j_k} * f)(x)| = |(P_{s+1/j_k} * f)(x)| \le m$ as well. Moreover, $||F_{j_k}||_{L^{\infty}} \le m$, thus $|(P_s * F_{j_k})(x)| \le m$ for any $x \in \mathbb{R}^n$. For (ii) we use the following²: if $g \in L^{\infty}(\mathbb{R}^n)$ is continuous in a neighborhood of $x_0 \in \mathbb{R}^n$, then $(P_s * g)(x) \to g(x_0)$ as $(x,s) \to (x_0, 0^+)$. Then we obtain (ii) by applying this fact to $g = P_{1/j_k} * f - \chi_{G_{j_k}}(P_{1/j_k} * f)$, which is continuous in a neighborhood of a point x_0 in $\overline{G_{2j_k}}$, lies in L^{∞} in view of (2.1.41) with $t = 1/j_k$, and satisfies $g(x_0) = 0$.

We finally prove (2.1.47). Let $w_k(x,t) = (P_t * P_{1/j_k} * f)(x) - (P_t * F_{j_k})(x)$ for k = 1, 2, ... and consider the harmonic functions $w(x,t) \pm w_k(x,t)$ on Ω . We have that $w(x,t) \pm w_k(x,t) \ge 0$ on $\partial \Omega \setminus (U_m \cap Q)$ and moreover,

$$\liminf_{\Omega\ni(x,t)\to(x_0,0)} \left(w(x,t) \pm w_k(x,t) \right) \ge \liminf_{\Omega\ni(x,t)\to(x_0,0)} w(x,t) + \liminf_{\Omega\ni(x,t)\to(x_0,0)} \left(\pm w_k(x,t) \right) \ge 0$$

as the first term on the right is nonnegative and the second one is zero in view of (ii). From this we will deduce that $w(x,t) \pm w_k(x,t) \ge 0$ for all $(x,t) \in \Omega$ and all k. If this were not the case, then $w - w_k$ would take a negative value in Ω and by the minimum principle for harmonic functions it should attain its (negative) minimum at some point in $U_m \cap Q$. Then for some $\delta > 0$ and for each k = 1, 2, ... there would exist (x_l^k, t_l^k) in Ω such that $w(x_l^k, t_l^k) \pm w_k(x_l^k, t_l^k) < -\delta$ and (x_l^k, t_l^k) would converge to $(x_0, 0^+)$ as $l \to \infty$ for some point x_0 in $U_m \cap Q$. But this x_0 lies in $\overline{G_{2j_k}}$ for some j_k contradicting (ii). We now showed that $|w_k| \le w$ on Ω for all k and thus $|\lim_{k\to\infty} w_k| \le w$ on Ω . But since $\lim_{s\to 0^+} w(x,s) = 0$ for almost all $x \in U_m \cap Q$, the same assertion is valid for $\lim_{k\to\infty} w_k = P_s * f - P_s * F$. This proves (2.1.47).

Corollary 2.1.8. For any two Schwartz functions Φ and Θ with nonvanishing integral we have

$$\left\|\sup_{t>0}\left|\Theta_{t}*f\right|\right\|_{L^{p}}\approx\left\|\sup_{t>0}\left|\Phi_{t}*f\right|\right\|_{L^{p}}\approx\left\|f\right\|_{H^{p}}$$

for all $f \in \mathscr{S}'(\mathbf{R}^n)$, with constants depending only on n, p, Φ , and Θ .

Proof. See the discussion after Theorem 2.1.4.

Next we define a *norm* on Schwartz functions relevant in the theory of Hardy spaces:

$$\mathfrak{N}_{N}(\boldsymbol{\varphi}; x_{0}, R) = \int_{\mathbf{R}^{n}} \left(1 + \left| \frac{x - x_{0}}{R} \right| \right)^{N} \sum_{|\boldsymbol{\alpha}| \leq N+1} R^{|\boldsymbol{\alpha}|} |\partial^{\boldsymbol{\alpha}} \boldsymbol{\varphi}(x)| \, dx$$

Note that $\mathfrak{N}_N(\varphi; 0, 1) = \mathfrak{N}_N(\varphi)$.

Corollary 2.1.9. (a) For any $0 , every <math>f \in H^p(\mathbb{R}^n)$, and any $\varphi \in \mathscr{S}(\mathbb{R}^n)$, we have

$$\left|\left\langle f, \boldsymbol{\varphi} \right\rangle\right| \le \mathfrak{N}_{N}(\boldsymbol{\varphi}) \inf_{|z| \le 1} \mathscr{M}_{N}(f)(z), \qquad (2.1.49)$$

76

² For a proof see the book's website: http://faculty.missouri.edu/~grafakosl/FourierAnalysis.html