1.1 Smooth Functions and Tempered Distributions

(c) Assertion (1.1.6) follows from (1.1.5) by duality. To prove (1.1.5), we use the Fourier transform. We have that if φ_N, φ lie in \mathscr{S}_0 , then $\varphi_N \to \varphi$ in \mathscr{S}_0 if and only if $\varphi_N \to \varphi$ in \mathscr{S} which happens if and only if $\widehat{\varphi_N} \to \widehat{\varphi}$ in \mathscr{S} . Thus to show that $\sum_{|j| \le N} \Delta_j^{\Psi}(\varphi) \to \varphi$, it suffices to show that $\sum_{|j| \ge N} \widehat{\varphi}(\xi) \widehat{\Psi}(2^{-j}\xi) \to 0$ in $\mathscr{S}(\mathbb{R}^n)$. But $\partial_{\xi}^{\beta}(\xi^{\alpha} \widehat{\varphi}(\xi) \sum_{j \ge N} \widehat{\Psi}(2^{-j}\xi))$ is supported in $|\xi| \ge c 2^N$, for some constant c > 0, and decays rapidly at infinity, so

$$\sup_{\boldsymbol{\xi}\in\mathbf{R}^n}|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\beta}}\big(\boldsymbol{\xi}^{\alpha}\widehat{\boldsymbol{\varphi}}(\boldsymbol{\xi})\sum_{j\geq N}\widehat{\Psi}(2^{-j}\boldsymbol{\xi})\big)|\to 0$$

as $N \to \infty$. Also, $\partial_{\xi}^{\beta} \left(\xi^{\alpha} \widehat{\varphi}(\xi) \sum_{j \le -N} \widehat{\Psi}(2^{-j} \xi) \right)$ is supported in $|\xi| \le c' 2^{-N}$ and vanishes at zero to infinite order; thus, it satisfies

$$\left|\partial_{\xi}^{\beta}\left(\xi^{\alpha}\widehat{\varphi}(\xi)\left[\chi_{\{0\}}(\xi)+\sum_{j\leq -N}\widehat{\Psi}(2^{-j}\xi)\right]\right)\right|\leq c_{\alpha,\beta,\varphi,\Psi}\sup_{|\xi|\leq 2^{-N+1}}|\xi|,$$

which tends to zero as $N \rightarrow \infty$.

Corollary 1.1.7. (*Calderón reproducing formula*) Let Ψ, Ω be Schwartz functions whose Fourier transforms are supported in annuli that do not contain the origin and satisfy

$$\sum_{j\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi)\widehat{\Omega}(2^{-j}\xi)=1$$

for all $\xi \neq 0$. Then for all $f \in \mathscr{S}'(\mathbf{R}^n) / \mathscr{P}(\mathbf{R}^n)$ we have

$$\sum_{j \in \mathbf{Z}} \Psi_{2^{-j}} * \Omega_{2^{-j}} * f = \sum_{j \in \mathbf{Z}} \Delta_j^{\Psi} \Delta_j^{\Omega}(f) = f, \qquad (1.1.8)$$

where the convergence is in $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$.

Proof. The assertion is contained in the conclusion of Proposition 1.1.6(c) with $\Psi * \Omega$ in place of Ψ .

Exercises

1.1.1. Given multi-indices α, β , show that there are constants C, C' such that

$$egin{aligned} &
ho_{lpha,eta}(arphi) \leq C \sum_{|\gamma| \leq |lpha|} \sum_{|\delta| \leq |eta|}
ho_{\gamma,\delta}'(arphi)\,, \ & \ &
ho_{lpha,eta}'(arphi) \leq C' \sum_{|\gamma| \leq |lpha|} \sum_{|\delta| \leq |eta|}
ho_{\gamma,\delta}(arphi)\,. \end{aligned}$$

for all Schwartz functions φ .

[*Hint:* The first inequality follows by Leibniz's rule. Conversely, to express $\xi^{\alpha} \partial^{\beta} \varphi$ in terms of linear combinations of $\partial^{\beta}(\xi^{\gamma}\varphi(\xi))$, proceed by induction on $|\alpha|$, using