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Also by the definitions of E¢ and U(f; ®)&", for any x € E. we have
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for all £ satisfying | —x| <t < 1. It follows from (2.1.32) and (2.1.33) that
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for all & satisfying |€ —x| <1 < % We let z€ B(x,7) N B(yo,t). Applying the mean
value theorem and using (2.1.34), we obtain, for some & between y( and z,
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provided z also satisfies |z —yo| < 27V"2K~!¢ in addition to |z — x| < ¢. Therefore,
for z satisfying |z —yo| < 27V "2K~!t and |z — x| < t we have
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where the last inequality uses (2.1.32). Thus we have
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where we used the simple geometric fact that if |x —yg| < ¢ and § > 0, then

|B(x,1) N B(yo, 61)|
|B(x,1)]

chﬁ >0,

the minimum of this constant being obtained when |x — yo| = ¢. See Figure 2.1.



