Also by the definitions of E_{ε} and $U(f; \Phi)^{{\varepsilon}, N}$, for any $x \in E_{\varepsilon}$ we have

$$t \left| \nabla (\Phi_t * f)(\xi) \right| \left(\frac{t}{t + \varepsilon} \right)^N \frac{1}{(1 + \varepsilon |\xi|)^N} \le K M_1^*(f; \Phi)^{\varepsilon, N}(x) \tag{2.1.33}$$

for all ξ satisfying $|\xi - x| < t < \frac{1}{\varepsilon}$. It follows from (2.1.32) and (2.1.33) that

$$t \left| \nabla (\Phi_t * f)(\xi) \right| \le 2K \left| (\Phi_t * f)(y_0) \right| \left(\frac{1 + \varepsilon |\xi|}{1 + \varepsilon |y_0|} \right)^N \tag{2.1.34}$$

for all ξ satisfying $|\xi - x| < t < \frac{1}{\varepsilon}$. We let $z \in B(x,t) \cap B(y_0,t)$. Applying the mean value theorem and using (2.1.34), we obtain, for some ξ between y_0 and z,

$$\begin{aligned} \left| (\Phi_{t} * f)(z) - (\Phi_{t} * f)(y_{0}) \right| &= \left| \nabla (\Phi_{t} * f)(\xi) \right| |z - y_{0}| \\ &\leq \frac{2K}{t} \left| (\Phi_{t} * f)(\xi) \right| \left(\frac{1 + \varepsilon |\xi|}{1 + \varepsilon |y_{0}|} \right)^{N} |z - y_{0}| \\ &\leq \frac{2^{N+1}K}{t} \left| (\Phi_{t} * f)(y_{0}) \right| |z - y_{0}| \\ &\leq \frac{1}{2} \left| (\Phi_{t} * f)(y_{0}) \right|, \end{aligned}$$

provided z also satisfies $|z-y_0| < 2^{-N-2}K^{-1}t$ in addition to |z-x| < t. Therefore, for z satisfying $|z-y_0| < 2^{-N-2}K^{-1}t$ and |z-x| < t we have

$$\left| (\boldsymbol{\Phi}_t * f)(z) \right| \geq \frac{1}{2} \left| (\boldsymbol{\Phi}_t * f)(y_0) \right| \geq \frac{1}{4} M_1^*(f; \boldsymbol{\Phi})^{\varepsilon, N}(x),$$

where the last inequality uses (2.1.32). Thus we have

$$M(M(f; \Phi)^{q})(x) \geq \frac{1}{|B(x,t)|} \int_{B(x,t)} \left[M(f; \Phi)(w) \right]^{q} dw$$

$$\geq \frac{1}{|B(x,t)|} \int_{B(x,t)\cap B(y_{0},2^{-N-2}K^{-1}t)} \left[M(f; \Phi)(w) \right]^{q} dw$$

$$\geq \frac{1}{|B(x,t)|} \int_{B(x,t)\cap B(y_{0},2^{-N-2}K^{-1}t)} \frac{1}{4^{q}} \left[M_{1}^{*}(f; \Phi)^{\varepsilon,N}(x) \right]^{q} dw$$

$$\geq \frac{|B(x,t)\cap B(y_{0},2^{-N-2}K^{-1}t)|}{|B(x,t)|} \frac{1}{4^{q}} \left[M_{1}^{*}(f; \Phi)^{\varepsilon,N}(x) \right]^{q}$$

$$\geq C'(n,N,K)^{-1} 4^{-q} \left[M_{1}^{*}(f; \Phi)^{\varepsilon,N}(x) \right]^{q},$$

where we used the simple geometric fact that if $|x - y_0| \le t$ and $\delta > 0$, then

$$\frac{|B(x,t)\cap B(y_0,\delta t)|}{|B(x,t)|}\geq c_{n,\delta}>0,$$

the minimum of this constant being obtained when $|x - y_0| = t$. See Figure 2.1.