Glossary

\mathscr{C}^k	the space of functions f with $\partial^{\alpha} f$ continuous for all $ \alpha \leq k$
\mathscr{C}_0	space of continuous functions with compact support
\mathscr{C}_{00}	the space of continuous functions that vanish at infinity
\mathscr{C}^∞_0	the space of smooth functions with compact support
D	the space of smooth functions with compact support
S	the space of Schwartz functions
\mathscr{C}^{∞}	the space of smooth functions $\bigcap_{k=1}^{\infty} \mathscr{C}^k$
$\mathscr{D}'(\mathbf{R}^n)$	the space of distributions on \mathbf{R}^n
$\mathscr{S}'(\mathbf{R}^n)$	the space of tempered distributions on \mathbf{R}^n
$\mathscr{E}'(\mathbf{R}^n)$	the space of distributions with compact support on \mathbf{R}^n
P	the set of all complex-valued polynomials of <i>n</i> real variables
$\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}$	the space of tempered distributions on \mathbf{R}^n modulo polynomials
$\ell(Q)$	the side length of a cube Q in \mathbf{R}^n
∂Q	the boundary of a cube Q in \mathbf{R}^n
$L^p(X,\mu)$	the Lebesgue space over the measure space (X, μ)
$L^p(\mathbf{R}^n)$	the space $L^p(\mathbf{R}^n, \cdot)$
$L^{p,q}(X,\mu)$	the Lorentz space over the measure space (X, μ)
$L^p_{\mathrm{loc}}(\mathbf{R}^n)$	the space of functions that lie in $L^p(K)$ for any compact set K in \mathbb{R}^n
$ \mu $	the total (absolute) variation of a finite Borel measure μ on \mathbf{R}^n
$\mathscr{M}(\mathbf{R}^n)$	the space of all finite (signed) Borel measures on \mathbf{R}^n
$\mathscr{M}_p(\mathbf{R}^n)$	the space of L^p Fourier multipliers, $1 \le p \le \infty$
$\mathscr{M}^{p,q}(\mathbf{R}^n)$	the space of translation-invariant operators that map $L^p(\mathbf{R}^n)$ to $L^q(\mathbf{R}^n)$
$\ \mu\ _{\mathscr{M}}$	$\int_{\mathbf{R}^n} d \mu $ the norm (total variation) of a finite Borel measure μ on \mathbf{R}^n
\mathcal{M}	the centered Hardy-Littlewood maximal operator with respect to balls
М	the uncentered Hardy-Littlewood maximal operator with respect to balls
\mathcal{M}_c	the centered Hardy-Littlewood maximal operator with respect to cubes
M_c	the uncentered Hardy-Littlewood maximal operator with respect to cubes
\mathcal{M}_{μ}	the centered maximal operator with respect to a measure μ
M_{μ}	the uncentered maximal operator with respect to a measure μ

603