1 Smoothness and Function Spaces

for all $\xi \in \mathbf{R}^n$. Then for all $\varphi \in \mathscr{S}(\mathbf{R}^n)$ we have

$$S_0^{\Phi}(\varphi) + \sum_{j=1}^N \Delta_j^{\Psi}(\varphi) \to \varphi \tag{1.1.3}$$

in $\mathscr{S}(\mathbf{R}^n)$ as $N \to \infty$. Also, for all $f \in \mathscr{S}'(\mathbf{R}^n)$,

$$S_0^{\Phi}(f) + \sum_{j=1}^N \Delta_j^{\Psi}(f) \to f \tag{1.1.4}$$

as $N \to \infty$ in the topology of $\mathscr{S}'(\mathbf{R}^n)$.

(c) Let Ψ be a Schwartz function whose Fourier transform is supported in an annulus that does not contain the origin and satisfies

$$\sum_{j\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi)=1$$

for all $\xi \neq 0$. Then for all φ in $\mathscr{S}_0(\mathbf{R}^n)$ we have

$$\sum_{|j| < N} \Delta_j^{\Psi}(\varphi) \to \varphi \tag{1.1.5}$$

in $\mathscr{S}_0(\mathbf{R}^n)$ as $N \to \infty$. Also for all f in $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$ we have that

$$\sum_{|j|$$

in $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$ as $N \to \infty$.

Proof. (a) Let $\widetilde{\Phi}(x) = \Phi(-x)$. We observe that for any $f \in \mathscr{S}'(\mathbb{R}^n)$ and $\varphi \in \mathscr{S}(\mathbb{R}^n)$ we have

$$\left\langle S_{N}^{\Phi}(f), \boldsymbol{\varphi} \right\rangle = \left\langle f, S_{N}^{\Phi}(\boldsymbol{\varphi}) \right\rangle$$

In view of this, (1.1.2) follows from (1.1.1) via duality, since $\widetilde{\Phi}$ and Φ have the same properties. To prove (1.1.1), we fix a function φ in \mathscr{S} . It is equivalent to show that $(S_N^{\Phi}(\varphi))^{\widehat{}} \rightarrow \widehat{\varphi}$ in $\mathscr{S}(\mathbb{R}^n)$. Fix multi-indices α, β . It will suffice to show that

$$\rho_{\alpha,\beta}'((S_N^{\Phi}(\varphi))\widehat{-}\widehat{\varphi}) = \sup_{\xi \in \mathbf{R}^n} \left|\partial_{\xi}^{\beta} \left[(1 - \widehat{\Phi}(2^{-N}\xi))\widehat{\varphi}(\xi)\xi^{\alpha} \right] \right| \to 0$$
(1.1.7)

as $N \to \infty$. Since $\widehat{\Phi}$ is equal to 1 on the unit ball, it follows that the supremum in (1.1.7) is over the set $|\xi| \ge 2^N$. By Leibniz's rule, the ∂^{β} derivative in the preceding expression is equal to a sum of ∂^{γ} derivatives falling on $(1 - \widehat{\Phi}(2^{-N}\xi))$ times $\partial^{\beta-\gamma}$ derivatives falling on $\widehat{\varphi}(\xi)\xi^{\alpha}$, where $\gamma \le \beta$. If $\gamma \ne 0$, then then a factor of 2^{-N} appears from the differentiation in γ . If $\gamma = 0$, then then the conclusion follows in view of the rapid decay of $\partial^{\beta}(\widehat{\varphi}(\xi)\xi^{\alpha})$ on the set $|\xi| \ge 2^N$.

The proof of (b) follows in the same way as the proof of (a) with the function $\Phi(\xi) + \sum_{j=1}^{N} \widehat{\Psi}(2^{-j}\xi)$ in place of $\widehat{\Phi}(2^{-N}\xi)$, which has similar support properties.