B Smoothness and Vanishing Moments

In particular, we have

$$\left| (\Phi_{2^{-\mu}} * \Psi_{2^{-\nu}})(x) \right| \le C'_{M,N,L,n} AB \frac{2^{\mu n} 2^{-(\nu-\mu)L}}{(1+2^{\mu}|x|)^M}$$

Let $\Phi_t(x) = t^{-n} \Phi(t^{-1}x)$ and $\Psi_s(x) = s^{-n} \Psi(s^{-1}x)$ for t, s > 0. Set $2^{-\mu} = t$ and $2^{-\nu} = s$. The assumption $\nu \ge \mu$ can be equivalently stated as $s \le t$.

The preceding inequalities can also be written equivalently as

$$\left|\int_{\mathbf{R}^n} \Phi_t(x-a)\Psi_s(x-b)\,dx\right| \leq C'_{M,N,L,n}AB\,\frac{t^{-n}\left(\frac{s}{t}\right)^L}{(1+t^{-1}|a-b|)^M}\,.$$

and

$$\left| (\Phi_t * \Psi_s)(x) \right| \le C'_{M,N,L,n} AB \frac{t^{-n} \left(\frac{s}{t}\right)^L}{(1+t^{-1}|x|)^M}$$

for all $x \in \mathbf{R}^n$, when $s \leq t$.

These results are easy consequences of the inequality in Appendix B.2. If Ψ has no cancellation (i.e., L = 0), then the estimate reduces to that in Appendix B.1.

B.4 Both Functions have Cancellation: An Example

Let $L \in \mathbb{Z}^+$, A, B, N > 0 and $\mu, \nu \in \mathbb{R}$. Suppose that N > L + n. Let Ω, Ψ be \mathscr{C}^L functions on \mathbb{R}^n such that

$$A = \sup_{|\gamma| \le L} \sup_{x \in \mathbf{R}^n} |\partial^{\gamma} \Omega(x)| (1+|x|)^N < \infty$$
$$B = \sup_{|\gamma| \le L} \sup_{x \in \mathbf{R}^n} |\partial^{\gamma} \Psi(x)| (1+|x|)^N < \infty$$

and moreover, for all multi-indices β with $|\beta| \leq L - 1$ we have

$$\int_{\mathbf{R}^n} \Omega(x) x^\beta dx = \int_{\mathbf{R}^n} \Psi(x) x^\beta dx = 0$$

Then given M > 0 satisfying M < N - L - n there is a constant $C''_{N,M,L,n}$ such that for all $x, a, b \in \mathbf{R}^n$ we have

$$\left| \int_{\mathbf{R}^n} \Omega_{2^{-\mu}}(x-a) \Psi_{2^{-\nu}}(x-b) \, dx \right| \le C_{N,M,L,n}'' \, AB \, \frac{\min(2^{\mu n}, 2^{\nu n}) 2^{-|\nu-\mu|L}}{(1+\min(2^{\mu}, 2^{\nu})|a-b|)^M} \, .$$

598