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In particular, we have
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Let @ (x) = t7"® (¢t~ 'x) and ¥(x) = s "¥(s~'x) for t,5 > 0. Set 27* =t and
27V = 5. The assumption v > U can be equivalently stated as s <r.
The preceding inequalities can also be written equivalently as
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for all x € R”, when s <.
These results are easy consequences of the inequality in Appendix B.2. If ¥ has
no cancellation (i.e., L = 0), then the estimate reduces to that in Appendix B.1.

B.4 Both Functions have Cancellation: An Example

Let L€ Z*, A,B,N >0 and u,v € R. Suppose that N > L+n. Let Q,¥ be ¢+
functions on R” such that
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and moreover, for all multi-indices 8 with || < L—1 we have
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Then given M > 0 satisfying M < N — L —n there is a constant Cy , ; , such that
for all x,a,b € R" we have
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