$$
\frac{2^{\mu n}}{\left(1+2^{\mu}|x-a|\right)^{M}} \leq \frac{2^{\mu n}}{\left(2^{\mu} \frac{1}{2}|a-b|\right)^{M}} \leq \frac{4^{M} 2^{(v-\mu)(M-n)} 2^{v n}}{\left(1+2^{v}|a-b|\right)^{M}} .
$$

The claimed estimate follows.

B. 2 One Function has Cancellation

Fix $a, b \in \mathbf{R}^{n}, M \geq 0, \mu, v \in \mathbf{R}$, and $L \in \mathbf{Z}^{+}$. Assume that $v \geq \mu$ and that $N>$ $L+M+n$.

Given a function Ψ on \mathbf{R}^{n} and another function $\Phi \in \mathscr{C} \mathscr{C}^{L}\left(\mathbf{R}^{n}\right)$ consider the quantities

$$
\begin{aligned}
K_{\mu, a}^{M, L}(\Phi) & =\sup _{|\beta|=L} \sup _{x \in \mathbf{R}^{n}}\left(1+2^{\mu}|x-a|\right)^{M}\left|\partial^{\beta} \Phi(x)\right| \\
K_{v, b}^{N}(\Psi) & =\sup _{x \in \mathbf{R}^{n}}\left(1+2^{v}|x-b|\right)^{N}|\Psi(x)|
\end{aligned}
$$

and assume they are both finite. Suppose, moreover, that

$$
\int_{\mathbf{R}^{n}} \Psi(x) x^{\beta} d x=0 \quad \text { for all }|\beta| \leq L-1
$$

Then there is a constant $C_{M, N, L, n}$ such that

$$
\left|\int_{\mathbf{R}^{n}} \Phi(x) \Psi(x) d x\right| \leq C_{M, N, L, n} K_{\mu, a}^{M, L}(\Phi) K_{v, b}^{N}(\Psi) \frac{2^{-v L-v n}}{\left(1+2^{\mu}|a-b|\right)^{M}}
$$

To prove this claim, we first assume that Φ is real-valued in order to use Langrange's mean value form for the remainder in Taylor's theorem (Appendix I in [156]). For complex-valued Φ we work with its real and imaginary parts separately. We subtract the Taylor polynomial of order $L-1$ of Φ at the point a from the function Φ using the cancellation of Ψ. Then we write

$$
\begin{aligned}
& \left|\int_{\mathbf{R}^{n}} \Phi(x) \Psi(x) d x\right| \\
& =\left|\int_{\mathbf{R}^{n}}\left[\Phi(x)-\sum_{|\gamma| \leq L-1} \frac{\partial^{\gamma} \Phi(b)}{\gamma!}(x-b)^{\gamma}\right] \Psi(x) d x\right| \\
& =\left|\int_{\mathbf{R}^{n}} \sum_{|\beta|=L} \frac{\partial^{\beta} \Phi\left(\xi_{b, x}\right)}{\beta!}(x-b)^{\beta} \Psi(x) d x\right| \\
& \leq K_{\mu, a}^{M, L}(\Phi) K_{v, b}^{N}(\Psi) \sum_{|\beta|=L} \frac{1}{\beta!} \int_{\mathbf{R}^{n}} \frac{|x-b|^{L}}{\left(1+2^{\mu}\left|\xi_{b, x}-a\right|\right)^{M}} \frac{1}{\left(1+2^{v}|x-b|\right)^{N}} d x \\
& \leq K_{\mu, a}^{M, L}(\Phi) K_{v, b}^{N}(\Psi) \sum_{|\beta|=L} \frac{1}{\beta!} \int_{\mathbf{R}^{n}} \frac{2^{-v L}}{\left(1+2^{\left.\mu\left|\xi_{b, x}-a\right|\right)^{M}} \frac{1}{\left(1+2^{v}|x-b|\right)^{N-L}} d x\right.}
\end{aligned}
$$

where $\xi_{b, x}$ lies on the open segment joining b to x.

