596 B Smoothness and Vanishing Moments

QMn oun 4M2(v—u)(M—n)2vn
< < .
(2 =al) = @il ~ (1+ 27— b

The claimed estimate follows.

B.2 One Function has Cancellation

Fix a,b € R", M>0, u,v € R, and L € Z*. Assume that v > u and that N >
L+M+n.

Given a function ¥ on R”" and another function @ € ¢’>(R") consider the quan-
tities

Kik(@) = sup sup (1428 [x—a|)"|9P @ ()],
|B|=L x€R"

Kyp(¥) = sup (142" |x—b|)" ¥ ()|
x€R?

and assume they are both finite. Suppose, moreover, that
¥(x)xPdx=0 forall |B|<L-—1.
Rn
Then there is a constant Cy v 1., such that
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To prove this claim, we first assume that @ is real-valued in order to use Lan-
grange’s mean value form for the remainder in Taylor’s theorem (Appendix I in
[156]). For complex-valued @ we work with its real and imaginary parts separately.
We subtract the Taylor polynomial of order L — 1 of @ at the point a from the func-
tion @ using the cancellation of ¥. Then we write
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where &, , lies on the open segment joining b to x.



