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The claimed estimate follows.

B.2 One Function has Cancellation

Fix a,b ∈ Rn, M≥0, µ,ν ∈ R, and L ∈ Z+. Assume that ν ≥ µ and that N >
L+M+n.

Given a function Ψ on Rn and another function Φ ∈ C L(Rn) consider the quan-
tities
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and assume they are both finite. Suppose, moreover, that∫
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To prove this claim, we first assume that Φ is real-valued in order to use Lan-
grange’s mean value form for the remainder in Taylor’s theorem (Appendix I in
[156]). For complex-valued Φ we work with its real and imaginary parts separately.
We subtract the Taylor polynomial of order L−1 of Φ at the point a from the func-
tion Φ using the cancellation of Ψ . Then we write∣∣∣∣∫Rn
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where ξb,x lies on the open segment joining b to x.


