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It is quite easy to see that the Dirac mass & does not belong in any Hardy space;
indeed, & * P, = P, and sup,. P (x) is comparable to |x|~" which does not lie in
LP(R") for any p. However, the difference of Dirac masses §; — d_; lies in H”(R)
for 1/2 < p < 1. To see this, notice that
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x > 0. Consequently, (2.1.5) lies in L?(R) if and only if 1/2 < p < 1.

At this point we don’t know whether the H” spaces coincide with any other
known spaces for some values of p. In the next theorem we show that this is the
case when 1 < p < 0.

Thus (2.1.5) is comparable to for x < 0 and analogously to | Bl for

x4+ 112 |x—1]

Theorem 2.1.2. (a) Let 1 < p < oo. Then every bounded tempered distribution f in
H? is an element of LP. Moreover, there is a constant Cy, , such that for all such f
we have

11l < U7 < Gl Lo

and therefore HP (R") coincides with LP (R").
(b) When p = 1, every element of H' is an integrable function. In other words,
H'(R") C LY (R") and for all f € H' we have

1Al < [l - (2.1.6)

Proof. (a) Let f € HP(R") for some 1 < p < co. The set {P* f: ¢t > 0} liesin a
multiple of the unit ball of L”(R"), which is the dual space of the separable Banach
space L (R"), and hence it is weak™ sequentially compact by the Banach—Alaoglu
theorem. Therefore, there exists a sequence #; — 0 such that F;; * f converges to
some L? function fy in the weak® topology of L”. On the other hand, in view of
(2.1.3), B * f— fin.Z'(R") ast; — 0, and thus the bounded tempered distribution
f coincides with the L” function fy. Since the family {F,},~¢ is an approximate
identity, Theorem 1.2.19 in [156] gives that

|Psf—fll,,—0 ast — 0,
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from which it follows that
1Al < [Fsup 1B £l = 1] o - 217
t>0
The converse inequality is a consequence of the fact that

sup [P+ f| < M(f),
>0

where M is the Hardy-Littlewood maximal operator. (See Corollary 2.1.12 in
[156].)

(b) The case p = 1 requires only a small modification of the case p > 1. We
embed L' in the space of finite Borel measures .# which is the dual of the separa-
ble space %oo(R") of all continuous functions on R” that vanish at infinity. By the
Banach-Alaoglu theorem, the unit ball of .# is weak™ sequentially compact, and
we can extract a sequence 7; — 0 such that 7,  f converges to some measure [ in
the topology of measures. In view of (2.1.3), it follows that the distribution f can be
identified with the measure p.

It remains to show that u is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L' function. We show that y is
absolutely continuous with respect to Lebesgue measure by showing that for all sub-
sets E of R" we have |[E| =0 = |u(E)| = 0. Since sup,. |P  f| lies in L' (R"),
given € > 0, there exists a 6 > 0 such that for any measurable subset F of R" we
have

|F| <6 = /sup|P,*f\dx<8.
JF >0
Given E with |[E| = 0, we can find an open set U such that E C U and |U| < §. Let

us denote by %po(U) the space of continuous functions g(x) that are supported in U
and tend to zero as |x| — eo. Then for any g in %o (U) we have
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Let |u| be the total absolute variation of ©. Then we have (see [190] (20.49))

@)= [ raul=sup{]| [ eau|: ¢ cm), el <1},

which implies |p|(U) < €. Since € was arbitrary, it follows that |¢|(E) = 0 and
thus p(E) = 0; hence p is absolutely continuous with respect to Lebesgue measure.
Finally, (2.1.6) is a consequence of (2.1.7), which is also valid for p = 1. [l
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We may wonder whether H' coincides with L!. We show in Corollary 2.4.8 that
elements of H' have integral zero; thus H' is a proper subspace of L.

2.1.2 Quasi-norm Equivalence of Several Maximal Functions

We now obtain some characterizations of these spaces.

Definition 2.1.3. Let a,b > 0. Let @ be a Schwartz function and let f be a tempered
distribution on R". We define the smooth maximal function of f with respect to ®
as

M(f;®)(x) = fggl(d% * f)(x)].

We define the nontangential maximal function (with aperture a) of f with respect to
P as

My (f;®)(x) =sup sup [(Dr*f)(y)]-
t>0| yE‘R”
y—x| <at

We also define the auxiliary maximal function

(P # f)(x =)

M;*(f; @) (x) = sup sup ——————" (2.1.8)
b ( ) >0 yeR"? (1+til|Y|)b
and we observe that
M(f;®@) <M (f;®) < (1+a)"M" (f;®) (2.1.9)

for all a,b > 0. We note that if @ is merely integrable, for example, if @ is the
Poisson kernel, the maximal functions M(f; @), M;;(f; ®), and M;*(f; P) are well
defined only for bounded tempered distributions f on R”.

For a fixed positive integer N and a Schwartz function ¢ we define the quantity

Ny (o) =/ (14N Y [0%p(x)|dx. (2.1.10)
R o] <N-+1
We now define
Fy = {<pey(R"): My () < 1}, 2.1.11)

and we also define the grand maximal function of f (with respect to N) as

AN (f)(x) = sup Mi(f;9)(x).
PETIN

It is a fact that all the maximal functions of the preceding subsection have compa-
rable L? quasi-norms for all 0 < p < oo, This is the essence of the following theorem.
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Theorem 2.1.4. Let 0 < p < . Then the following statements are valid:
(a) There exists a Schwartz function ®° with [gn P°(x)dx =1 such that

|M(f; )|, <500 ]|, (2.1.12)

Jfor all bounded distributions f € .7'(R").
(b) For every a > 0 and every @ in ./ (R") with [gs P(x)dx = 1 one has

M5 (f: @)| < Can, p.a, @)||M(f: D)

o (2.1.13)

for some constant Cy(n, p,a, @) < o and for all distributions f € /' (R").
(c) For every a > 0, b > n/p, and every ®@ in .#(R") there exists a constant
C3(n, p,a,b) < oo such that

M5 (f: )|

Sor all distributions f € /' (R").
(d) For every b > 0 and every @ in ./ (R") with [ga ®(x)dx =1 there exists a
constant C4(b, @) < oo such that if N = [b] + 1 we have

1 S Cs(n,p.a.b)||M;(f:P)|,, (2.1.14)

[ ()] < Ca(b, @) |M5"(f3 D), (2.1.15)

Jfor all distributions f € ' (R").
(e) For every positive integer N there exists a constant Cs(n,N) such that every
tempered distribution f with H///N (f) H 1 < o0 is abounded distribution and satisfies

£l < Cs(n,N) || n(f)|

. (2.1.16)

that is, it lies in the Hardy space HP.
Choosing @ = &° in parts (b), (¢), and (d), % <b< [%} +1,and N = [%] +1, we

conclude that for bounded distributions f we have

HfHHP ~ H%N(f)HLP'

Moreover, for any Schwartz function @ with [g. € (x)dx = 1 and any bounded dis-
tribution f in ./ (R"), the following quasi-norms are equivalent

||f||HI’ ~ HM(f;(D)HU”

with constants that depend only on @, n, p.
Before we begin the proof of Theorem 2.1.4, we state and prove a useful lemma.
Lemma 2.1.5. Let m € Z" and let ® in ./ (R") satisfy [gn @(x)dx = 1. Then there

exists a constant Co(P,m) such that for any ¥ in .7 (R"), there are Schwartz func-
tions @(‘Y), 0<s < 1, with the properties

Y(x) = /O 1(@0‘) * @) (x)ds (2.1.17)
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and
/ (14 [x))"|0) (x)|dx < Co(@,m)s" M,y (P). (2.1.18)
R}l

Proof. We start with a smooth function § supported in [0, 1] that satisfies

0<C8(s) < oy forall0 <s<1,
S(s) =5 forall0<s <1,
() =0 forall § <s < 1.
We define m+1 terms
dm+lc —_—
O = (—1)"1¢(s) EW) x @ — T (8) Bk By (2.1.19)
m+2 terms

am+ 1

where Z () is chosen so that T (Dyx- 5Dy ) = =(5) x &,. Notice that

(s) _ d/l djl11+l

.‘]aw:.]‘mds,jl RO de’”+1 S
J1seeosdm =001 44 jp=m+1 :

for some constants cj, . ; . We claim that (2.1.17) holds for this choice of 0v). To
verify this assertion, we apply m+ 1 integration by parts to write

m+2 terms

——
/@ * ds—/ D™ (5)EW 5 *lde—g( 0) lim (Px...xP) +¥
s—0+ $
g m+2 terms
/—/%
m+1/C dm+1 ...*(ps>*':[/ds’
S

noting that all the boundary terms vanish except for the term at s = 0 in the first
integration by parts. The first and the third terms on the right above add up to zero,
while the second term equals ¥, since @ has integral one, which implies that the
family {(P - x D)}~ is an approximate identity as s — 0. Thus (2.1.17) holds.

We now prove estimate (2.1.18). Let Q be the (m-+1)-fold convolution of &. For
the second term on the right in (2.1.19), we note that the (m + 1)st derivative of {(s)
vanishes on [O, %] , so that we may write

/Rn(1+|x|)'"‘dm+lg(s)‘ Q5 W(x)|dx

dsm+1
Cuty 9 [, 1+ 17| [ 1202 120 ay) as
Cutgy ) [ [ (1 b)) [0 dva

Gty [, [, (1 Isx" @) (1-+ 1) () dyd

Coty ), -+ bmala ) ([ 1+ bhmolar)
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< Cy(D,m)s" Ny (P),

since x[%,l]( s5) < 2™s™. For the first term on the right in (2.1.19) we have

[k

‘dx

dJl
= /n L+ |x)™ 7o /”dﬁ(y)‘f’(x—sy)dy dx
di
= [ s [ o0 ,W(x—vy)dyd
< [ () / ®() |a“w<x—sy>||y|‘“‘}dydx
\05\</1
< [ lxes)"@0) L 109 @) (14 b dydx
n n ‘a‘<.1]
< [ B @O+ dy [ (14" Y (09 dx
TR R lo <y
<Cho [ (1" ¥ 1079 ()] ax
R lee| <y
using j; < m+ 1. Applying this estimate to the function d;i g”' * ¥ in place of ¥ we

1 J2 . .
‘i h_g’s 5 & d?? * ¥ where the last displayed sum is taken

over |a| < j; + j». Continuing in this way we obtain the desired estimate for every
term that appears in the sum defining = (%) and consequently for = ) jtself. Keeping
in mind that the function {(s) is pointwise bounded by s™ for 0 < s < 1, yields the
desired estimate. This concludes the proof of (2.1.18). O

obtain a similar estimate for

Next, we discuss the proof of Theorem 2.1.4.

Proof. (a) We pick a continuous and integrable function y/(s) on the interval [1, o)
that decays faster than any negative power of s (i.e., |w(s)| < Cys™" for all N > 0)

and such that .
. | ifk=0
k 9’
ds = 2,120
/1 S Wls)ds {0 k=123 ... (2.1:20)

Such a function exists; see Exercise 2.1.3. In fact, we may take

vis) = (2

1
el Peni 7(s—1)%). (2.121)

R'S

sin

We now define the function

°(x) = /1 W), (x) ds, (2.1.22)

where P is the Poisson kernel. Note that the double integral

//;ms#vdsdx
SANENFORS
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converges and so it follows from (2.1.20) and (2.1.22) via Fubini’s theorem that

P°(x)dx=1.
R”

Moreover, another application of Fubini’s theorem yields that

@0(E) = /1 TY()B(E) ds = /1 " w(s)e 2kl s

using that Py(€) = e 2™IE| (cf. Exercise 2.2.11 in [156]). This function is rapidly
decreasing as |&| — oo and the same is true for all the derivatives

0"B(E) = [ o (e ) as. 2129

Moreover, the function & is clearly smooth on R"\ {0} and we will show that it is
also smooth at the origin. Notice that for all multi-indices o we have

O (e7278l) =l (&) e

for some my € Z* and some polynomial py(&). By Taylor’s theorem, for some
function v(s, |&]) with 0 < v(s,|E|) < 2ms|E|, we have

L k Lt1
Camde] N a kIS ke (Z27sIEDTT e
e ];:0( 27) oS +7(L+1)! e .

Choosing L > myg gives

=0 k! |§|™me Elme (L+1)!

aéx(e—Zﬂ:s\ﬂ) _ i(*Zﬂ)kﬂskHalpa(é) +s\a\pa(§) (72ES|€|)L+1 e—v(s,|5\),

which, inserted in (2.1.23) and in view of (2.1.20), yields that when |ot| > 0, the

derivative 9%@° (&) tends to zero as & — 0 and when o = 0, ®°(&) — 1 as & — 0.

We conclude that ®° is continuously differentiable and hence smooth at the origin

(cf. Exercise 1.1.2); hence it lies in the Schwartz class, and thus so does P°.
Finally, we have the estimate

M(f; %) (x) = sup|(P * f)(x)]

t>0

= sup
>0

| wolds msip)),
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and the required conclusion follows since [;” |y/(s)|ds < 500. Note that we actually
obtained the stronger pointwise estimate

M(f; @) < S00M(f;P)
rather than (2.1.12).

(b) The control of the nontagential maximal function M (-; ) in terms of the
vertical maximal function M(-;®) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (2.1.13) as a consequence of the estimate

/! 1 *
123 (£; @)||7, < C3(n, p, @) [M(F5@) [, + 5 [ M (f: @)1 (2.1.24)

Lr r>

which is useful only if we know that ||M; (f;®)|r < eo. This presents a signif-
icant hurdle that needs to be overcome by an approximation. For this reason we
introduce a family of maximal functions M; (f;®)&" for 0 < &,N < oo such that
| M} (f; @)%V ||L» < oo and such that M (f; P)&N + M;(f;P) as € | 0 and we prove
(2.1.24) with M; (f; @)% in place of M;(f; ®). In other words we prove

1
| M3 (f: @)N||7, < Ch(n, p, @,N)P||M(f:®)||}, + 5 ||M; (f: @)V}, . (2.1.25)
2

where there is an additional dependence on N in the constant C(n, p,®,N), but
there is no dependence on €. The M; (f; )¢ are defined as follows: for a bounded
distribution f in ./ (R") such that M(f; P) € L? we define

M (F,P)EN (x) = D ) 1 .
eI Q?fg\ﬂfl,“ DOG) Trep

We first show that M (f; @)V lies in LP(R") N L™(R") if N is large enough
depending on f. Indeed, using that (P, x f)(x) = (f, ®;(x—-)) and the fact that f is
in /(R"), we obtain constants Cy and m = m such that:

(P+ )V < Cy Z sup |Wy(aﬁq’r)(y—w)|

|y|<m,|B|<mWER"

Cr Y. sup(L+|y|" +12™)|(0P @) (2)]

BEmeeR"

Cr(1+y") Y, sup (1+z™)[(9P @) (2)]

|B=mzeR"

(L+ ™) Y sup (1+1]2™)|(0P @) (z/r)]

min(¢?, ") fomzeR?
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(I+[y)™

< Cp—-"to(1+1" sup (1+ |z/1]™)| (9P @) (z/1
mm(t”,t”*’")( )‘ﬁEmZERR‘( | /| )|( )( / )|
< Cro(l+ely))"e™™(1+™) (" 4+17"7").

Multiplying by ()" (1 + &[y[)™" for some 0 <7 < Land [y —x| <t yields

b

t N 1 gfmfN(l_i_gfm)(gan_i_gnerfN)
) v <Cro N-
t+e/ (1+ely)) ’ (1+ely)¥=

(@) (

and using that 1 +¢[y| > 1(1+¢lx

), we obtain for some C"(f, ®,&,n,m,N) < o,

* (L. &N C"(f,CD,S,n,m,N)
Ml (f,(b) (X)S (]+8|x|)me

Taking N > m+n/p, we have that M; (f; @)% lies in LP(R"). This choice of N
depends on m and hence on the distribution f.
We now introduce functions

U(f:d &N — V(b : . :
(327 Oi?£é|y§l;|r)<tt’( *f)(y)’(l‘—h‘?) (1+€ly)V

and

Vi)W = s s (@ N0 (5) e (7 )[z’ﬂﬂ.

0<i< L yeR? t+e/ (T+ely)V \t+[x—y|

Let C(n) = || M| ;2(gr)—12(rn)> Where M is the Hardy-Littlewood maximal operator.
We need the norm estimate

2 *
[V(f:@)5N|,, < Cln)7 || M (f; @), (2.1.26)
and the pointwise estimate
U(f; @) <A(n,p,®,N)V(f;P)*", (2.1.27)
where
My n
A(®,N,n,p) =217 ;co@j@,NH%"Hl)mm[%]ﬂ(&j@)-

J

To prove (2.1.26) we observe that when z € B(y,t) C B(x, |x —y| +t) we have

(@ NWI(r5) T < MiC @)@,



