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It is quite easy to see that the Dirac mass δ0 does not belong in any Hardy space;
indeed, δ0 ∗Pt = Pt and supt>0 Pt(x) is comparable to |x|−n which does not lie in
Lp(Rn) for any p. However, the difference of Dirac masses δ1 −δ−1 lies in H p(R)
for 1/2 < p < 1. To see this, notice that

sup
t>0

∣∣∣(δ1 ∗Pt)(x)− (δ−1 ∗Pt)(x)
∣∣∣= sup

t>0

4|x|
π

t
(t2 + |x−1|2)(t2 + |x+1|2) . (2.1.5)

Suppose that |x+1|< |x−1|, i.e., x < 0. Then we have

sup
t≤|x+1|

t |x|
(t2 + |x−1|2)(t2 + |x+1|2) ≈ sup

t≤|x+1|

t |x|
|x−1|2|x+1|2 =

|x|
|x−1|2|x+1| .

Also,

sup
|x+1|≤t≤|x−1|

t |x|
(t2 + |x−1|2)(t2 + |x+1|2) ≈ sup

|x+1|≤t≤|x−1|

t |x|
|x−1|2t2 =

|x|
|x−1|2|x+1| ,

while
sup

t≥|x−1|

t |x|
(t2 + |x−1|2)(t2 + |x+1|2) ≈ sup

t≥|x−1|

t |x|
t4 =

|x|
|x−1|3 .

Thus (2.1.5) is comparable to |x|
|x−1|2|x+1| for x < 0 and analogously to |x|

|x+1|2|x−1| for
x > 0. Consequently, (2.1.5) lies in Lp(R) if and only if 1/2 < p < 1.

At this point we don’t know whether the H p spaces coincide with any other
known spaces for some values of p. In the next theorem we show that this is the
case when 1 < p < ∞.

Theorem 2.1.2. (a) Let 1 < p < ∞. Then every bounded tempered distribution f in
H p is an element of Lp. Moreover, there is a constant Cn,p such that for all such f
we have ∥∥ f

∥∥
Lp ≤

∥∥ f
∥∥

H p ≤Cn,p
∥∥ f
∥∥

Lp ,

and therefore H p(Rn) coincides with Lp(Rn).
(b) When p = 1, every element of H1 is an integrable function. In other words,
H1(Rn)⊆ L1(Rn) and for all f ∈ H1 we have∥∥ f

∥∥
L1 ≤

∥∥ f
∥∥

H1 . (2.1.6)

Proof. (a) Let f ∈ H p(Rn) for some 1 < p < ∞. The set {Pt ∗ f : t > 0} lies in a
multiple of the unit ball of Lp(Rn), which is the dual space of the separable Banach
space Lp′(Rn), and hence it is weak∗ sequentially compact by the Banach–Alaoglu
theorem. Therefore, there exists a sequence t j → 0 such that Pt j ∗ f converges to
some Lp function f0 in the weak∗ topology of Lp. On the other hand, in view of
(2.1.3), Pt j ∗ f→ f in S ′(Rn) as t j → 0, and thus the bounded tempered distribution
f coincides with the Lp function f0. Since the family {Pt}t>0 is an approximate
identity, Theorem 1.2.19 in [156] gives that∥∥Pt ∗ f − f

∥∥
Lp → 0 as t → 0,
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from which it follows that∥∥ f
∥∥

Lp ≤
∥∥sup

t>0
|Pt ∗ f |

∥∥
Lp =

∥∥ f
∥∥

H p . (2.1.7)

The converse inequality is a consequence of the fact that

sup
t>0

|Pt ∗ f | ≤ M( f ) ,

where M is the Hardy–Littlewood maximal operator. (See Corollary 2.1.12 in
[156].)

(b) The case p = 1 requires only a small modification of the case p > 1. We
embed L1 in the space of finite Borel measures M which is the dual of the separa-
ble space C00(Rn) of all continuous functions on Rn that vanish at infinity. By the
Banach-Alaoglu theorem, the unit ball of M is weak∗ sequentially compact, and
we can extract a sequence t j → 0 such that Pt j ∗ f converges to some measure µ in
the topology of measures. In view of (2.1.3), it follows that the distribution f can be
identified with the measure µ .

It remains to show that µ is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L1 function. We show that µ is
absolutely continuous with respect to Lebesgue measure by showing that for all sub-
sets E of Rn we have |E|= 0 =⇒ |µ(E)|= 0. Since supt>0 |Pt ∗ f | lies in L1(Rn),
given ε > 0, there exists a δ > 0 such that for any measurable subset F of Rn we
have

|F |< δ =⇒
∫

F
sup
t>0

|Pt ∗ f |dx < ε .

Given E with |E|= 0, we can find an open set U such that E ⊆U and |U |< δ . Let
us denote by C00(U) the space of continuous functions g(x) that are supported in U
and tend to zero as |x| → ∞. Then for any g in C00(U) we have∣∣∣∣∫Rn

gdµ

∣∣∣∣ = lim
j→∞

∣∣∣∣∫Rn
g(x)(Pt j ∗ f )(x)dx

∣∣∣∣
≤
∥∥g
∥∥

L∞

∫
U

sup
t>0

|(Pt ∗ f )(x)|dx

< ε
∥∥g
∥∥

L∞ .

Let |µ| be the total absolute variation of µ . Then we have (see [190] (20.49))

|µ|(U) =
∫

U
1d|µ|= sup

{∣∣∣∣∫Rn
gdµ

∣∣∣∣ : g ∈ C00(U),
∥∥g
∥∥

L∞ ≤ 1
}
,

which implies |µ|(U) < ε . Since ε was arbitrary, it follows that |µ|(E) = 0 and
thus µ(E) = 0; hence µ is absolutely continuous with respect to Lebesgue measure.
Finally, (2.1.6) is a consequence of (2.1.7), which is also valid for p = 1. □
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We may wonder whether H1 coincides with L1. We show in Corollary 2.4.8 that
elements of H1 have integral zero; thus H1 is a proper subspace of L1.

2.1.2 Quasi-norm Equivalence of Several Maximal Functions

We now obtain some characterizations of these spaces.

Definition 2.1.3. Let a,b > 0. Let Φ be a Schwartz function and let f be a tempered
distribution on Rn. We define the smooth maximal function of f with respect to Φ

as
M( f ;Φ)(x) = sup

t>0
|(Φt ∗ f )(x)| .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|<at

|(Φt ∗ f )(y)| .

We also define the auxiliary maximal function

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
(1+ t−1|y|)b , (2.1.8)

and we observe that

M( f ;Φ)≤ M∗
a( f ;Φ)≤ (1+a)bM∗∗

b ( f ;Φ) (2.1.9)

for all a,b > 0. We note that if Φ is merely integrable, for example, if Φ is the
Poisson kernel, the maximal functions M( f ;Φ), M∗

a( f ;Φ), and M∗∗
b ( f ;Φ) are well

defined only for bounded tempered distributions f on Rn.
For a fixed positive integer N and a Schwartz function ϕ we define the quantity

NN(ϕ) =
∫

Rn
(1+ |x|)N

∑
|α|≤N+1

|∂ α
ϕ(x)|dx . (2.1.10)

We now define
FN =

{
ϕ ∈ S (Rn) : NN(ϕ)≤ 1

}
, (2.1.11)

and we also define the grand maximal function of f (with respect to N) as

MN( f )(x) = sup
ϕ∈FN

M∗
1( f ;ϕ)(x) .

It is a fact that all the maximal functions of the preceding subsection have compa-
rable Lp quasi-norms for all 0< p<∞. This is the essence of the following theorem.
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Theorem 2.1.4. Let 0 < p < ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φo with

∫
Rn Φo(x)dx = 1 such that∥∥M( f ;Φ

o)
∥∥

Lp ≤ 500
∥∥ f
∥∥

H p (2.1.12)

for all bounded distributions f ∈ S ′(Rn).
(b) For every a > 0 and every Φ in S (Rn) with

∫
Rn Φ(x)dx = 1 one has∥∥M∗

a( f ;Φ)
∥∥

Lp ≤C2(n, p,a,Φ)
∥∥M( f ;Φ)

∥∥
Lp (2.1.13)

for some constant C2(n, p,a,Φ)< ∞ and for all distributions f ∈ S ′(Rn).
(c) For every a > 0, b > n/p, and every Φ in S (Rn) there exists a constant
C3(n, p,a,b)< ∞ such that∥∥M∗∗

b ( f ;Φ)
∥∥

Lp ≤C3(n, p,a,b)
∥∥M∗

a( f ;Φ)
∥∥

Lp (2.1.14)

for all distributions f ∈ S ′(Rn).
(d) For every b > 0 and every Φ in S (Rn) with

∫
Rn Φ(x)dx = 1 there exists a

constant C4(b,Φ)< ∞ such that if N = [b]+1 we have∥∥MN( f )
∥∥

Lp ≤C4(b,Φ)
∥∥M∗∗

b ( f ;Φ)
∥∥

Lp (2.1.15)

for all distributions f ∈ S ′(Rn).
(e) For every positive integer N there exists a constant C5(n,N) such that every
tempered distribution f with

∥∥MN( f )
∥∥

Lp <∞ is a bounded distribution and satisfies∥∥ f
∥∥

H p ≤C5(n,N)
∥∥MN( f )

∥∥
Lp , (2.1.16)

that is, it lies in the Hardy space H p.

Choosing Φ = Φo in parts (b), (c), and (d), n
p < b < [ n

p ]+1, and N = [ n
p ]+1, we

conclude that for bounded distributions f we have∥∥ f
∥∥

H p ≈
∥∥MN( f )

∥∥
Lp .

Moreover, for any Schwartz function Φ with
∫

Rn Φ(x)dx = 1 and any bounded dis-
tribution f in S ′(Rn), the following quasi-norms are equivalent∥∥ f

∥∥
H p ≈

∥∥M( f ;Φ)
∥∥

Lp ,

with constants that depend only on Φ ,n, p.
Before we begin the proof of Theorem 2.1.4, we state and prove a useful lemma.

Lemma 2.1.5. Let m ∈ Z+ and let Φ in S (Rn) satisfy
∫

Rn Φ(x)dx = 1. Then there
exists a constant C0(Φ ,m) such that for any Ψ in S (Rn), there are Schwartz func-
tions Θ (s), 0<s ≤ 1, with the properties

Ψ(x) =
∫ 1

0
(Θ (s) ∗Φs)(x)ds (2.1.17)
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and ∫
Rn
(1+ |x|)m|Θ (s)(x)|dx ≤C0(Φ ,m)smNm(Ψ). (2.1.18)

Proof. We start with a smooth function ζ supported in [0,1] that satisfies

0 ≤ ζ (s)≤ sm

m! for all 0 ≤ s ≤ 1 ,

ζ (s) = sm

m! for all 0 ≤ s ≤ 1
2 ,

ζ (s) = 0 for all 7
8 ≤ s ≤ 1.

We define

Θ
(s) = (−1)m+1

ζ (s) Ξ
(s) ∗Ψ − dm+1ζ

dsm+1 (s)

m+1 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs ∗Ψ , (2.1.19)

where Ξ (s) is chosen so that dm+1

dsm+1

( m+2 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs

)
= Ξ (s) ∗Φs. Notice that

Ξ
(s) = ∑

j1,..., jm≥0: j1+···+ jm=m+1
c j1,..., jm

d j1

ds j1
Φs ∗ · · · ∗

d jm+1

ds jm+1
Φs ,

for some constants c j1,..., jm . We claim that (2.1.17) holds for this choice of Θ (s). To
verify this assertion, we apply m+1 integration by parts to write∫ 1

0
Θ

(s) ∗Φs ds =
∫ 1

0
(−1)m+1

ζ (s)Ξ (s) ∗Φs ∗Ψds+
dmζ

dsm (0) lim
s→0+

( m+2 terms︷ ︸︸ ︷
Φ∗. . .∗Φ

)
s ∗Ψ

− (−1)m+1
∫ 1

0
ζ (s)

dm+1

dsm+1

( m+2 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs

)
∗Ψ ds ,

noting that all the boundary terms vanish except for the term at s = 0 in the first
integration by parts. The first and the third terms on the right above add up to zero,
while the second term equals Ψ , since Φ has integral one, which implies that the
family {(Φ ∗ · · · ∗Φ)s}s>0 is an approximate identity as s → 0. Thus (2.1.17) holds.

We now prove estimate (2.1.18). Let Ω be the (m+1)-fold convolution of Φ . For
the second term on the right in (2.1.19), we note that the (m+1)st derivative of ζ (s)
vanishes on

[
0, 1

2

]
, so that we may write∫

Rn
(1+ |x|)m

∣∣∣dm+1ζ (s)
dsm+1

∣∣∣ |Ωs ∗Ψ(x)|dx

≤ Cm χ[ 1
2 ,1]

(s)
∫

Rn
(1+ |x|)m

[∫
Rn

1
sn

∣∣Ω( x−y
s )
∣∣ |Ψ(y)|dy

]
dx

≤ Cm χ[ 1
2 ,1]

(s)
∫

Rn

∫
Rn
(1+ |y+ sx|)m|Ω(x)| |Ψ(y)|dydx

≤ Cm χ[ 1
2 ,1]

(s)
∫

Rn

∫
Rn
(1+ |sx|)m|Ω(x)|(1+ |y|)m|Ψ(y)|dydx

≤ Cm χ[ 1
2 ,1]

(s)
(∫

Rn
(1+ |x|)m|Ω(x)|dx

)(∫
Rn
(1+ |y|)m|Ψ(y)|dy

)
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≤ C′
0(Φ ,m)sm Nm(Ψ) ,

since χ[ 1
2 ,1]

(s)≤ 2msm. For the first term on the right in (2.1.19) we have∫
Rn
(1+ |x|)m

∣∣∣d j1 Φs

ds j1
∗Ψ(x)

∣∣∣dx

=
∫

Rn
(1+ |x|)m

∣∣∣∣ d j1

ds j1

∫
Rn

Φ(y)Ψ(x− sy)dy
∣∣∣∣dx

=
∫

Rn
(1+ |x|)m

∣∣∣∣∫Rn
Φ(y)

d j1

ds j1
Ψ(x− sy)dy

∣∣∣∣dx

≤
∫

Rn
(1+ |x|)m

∫
Rn

|Φ(y)|
[

∑
|α|≤ j1

|∂ α
Ψ(x− sy)| |y||α|

]
dydx

≤
∫

Rn

∫
Rn
(1+ |x+ sy|)m|Φ(y)| ∑

|α|≤ j1

|∂ α
Ψ(x)|(1+ |y|) j1 dydx

≤
∫

Rn
(1+ |y|) j1 |Φ(y)|(1+ |y|)m dy

∫
Rn
(1+ |x|)m

∑
|α|≤ j1

|∂ α
Ψ(x)|dx

≤C′
m,Φ

∫
Rn
(1+ |x|)m

∑
|α|≤ j1

|∂ α
Ψ(x)|dx,

using j1 ≤ m+1. Applying this estimate to the function d j2 Φs
ds j2

∗Ψ in place of Ψ we

obtain a similar estimate for d j1 Φs
ds j1

∗ d j2 Φs
ds j2

∗Ψ where the last displayed sum is taken
over |α| ≤ j1 + j2. Continuing in this way we obtain the desired estimate for every
term that appears in the sum defining Ξ (s), and consequently for Ξ (s) itself. Keeping
in mind that the function ζ (s) is pointwise bounded by sm for 0 < s ≤ 1, yields the
desired estimate. This concludes the proof of (2.1.18). □

Next, we discuss the proof of Theorem 2.1.4.

Proof. (a) We pick a continuous and integrable function ψ(s) on the interval [1,∞)
that decays faster than any negative power of s (i.e., |ψ(s)| ≤CNs−N for all N > 0)
and such that ∫

∞

1
sk

ψ(s)ds =

{
1 if k = 0,
0 if k = 1,2,3, . . . .

(2.1.20)

Such a function exists; see Exercise 2.1.3. In fact, we may take

ψ(s) =
e
π

1
s

e−
√

2
2 (s−1)

1
4 sin

(√2
2

(s−1)
1
4

)
. (2.1.21)

We now define the function

Φ
o(x) =

∫
∞

1
ψ(s)Ps(x)ds , (2.1.22)

where Ps is the Poisson kernel. Note that the double integral∫
Rn

∫
∞

1

s

(s2 + |x|2) n+1
2

s−N dsdx
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converges and so it follows from (2.1.20) and (2.1.22) via Fubini’s theorem that∫
Rn

Φ
o(x)dx = 1 .

Moreover, another application of Fubini’s theorem yields that

Φ̂o(ξ ) =
∫

∞

1
ψ(s)P̂s(ξ )ds =

∫
∞

1
ψ(s)e−2πs|ξ | ds

using that P̂s(ξ ) = e−2πs|ξ | (cf. Exercise 2.2.11 in [156]). This function is rapidly
decreasing as |ξ | → ∞ and the same is true for all the derivatives

∂
α

Φ̂o(ξ ) =
∫

∞

1
ψ(s)∂ α

ξ

(
e−2πs|ξ |)ds . (2.1.23)

Moreover, the function Φ̂o is clearly smooth on Rn \{0} and we will show that it is
also smooth at the origin. Notice that for all multi-indices α we have

∂
α

ξ
(e−2πs|ξ |) = s|α|pα(ξ )|ξ |−mα e−2πs|ξ |

for some mα ∈ Z+ and some polynomial pα(ξ ). By Taylor’s theorem, for some
function v(s, |ξ |) with 0 ≤ v(s, |ξ |)≤ 2πs|ξ |, we have

e−2πs|ξ | =
L

∑
k=0

(−2π)k |ξ |k
k!

sk +
(−2πs|ξ |)L+1

(L+1)!
e−v(s,|ξ |) .

Choosing L > mα gives

∂
α

ξ
(e−2πs|ξ |) =

L

∑
k=0

(−2π)k |ξ |k
k!

sk+|α| pα(ξ )

|ξ |mα
+ s|α| pα(ξ )

|ξ |mα

(−2πs|ξ |)L+1

(L+1)!
e−v(s,|ξ |),

which, inserted in (2.1.23) and in view of (2.1.20), yields that when |α| > 0, the
derivative ∂ α Φ̂o(ξ ) tends to zero as ξ → 0 and when α = 0, Φ̂o(ξ )→ 1 as ξ → 0.
We conclude that Φ̂o is continuously differentiable and hence smooth at the origin
(cf. Exercise 1.1.2); hence it lies in the Schwartz class, and thus so does Φo.

Finally, we have the estimate

M( f ;Φ
o)(x) = sup

t>0
|(Φo

t ∗ f )(x)|

= sup
t>0

∣∣∣∣∫ ∞

1
ψ(s)( f ∗Pts)(x)ds

∣∣∣∣
≤
∫

∞

1
|ψ(s)|ds M( f ;P)(x) ,
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and the required conclusion follows since
∫

∞

1 |ψ(s)|ds ≤ 500. Note that we actually
obtained the stronger pointwise estimate

M( f ;Φ
o)≤ 500M( f ;P)

rather than (2.1.12).

(b) The control of the nontagential maximal function M∗
a(· ;Φ) in terms of the

vertical maximal function M( · ;Φ) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (2.1.13) as a consequence of the estimate∥∥M∗

1( f ;Φ)
∥∥p

Lp ≤C′′
2 (n, p,Φ)p∥∥M( f ;Φ)

∥∥p
Lp +

1
2

∥∥M∗
1( f ;Φ)

∥∥p
Lp , (2.1.24)

which is useful only if we know that ∥M∗
1( f ;Φ)∥Lp < ∞. This presents a signif-

icant hurdle that needs to be overcome by an approximation. For this reason we
introduce a family of maximal functions M∗

1( f ;Φ)ε,N for 0 ≤ ε,N < ∞ such that
∥M∗

1( f ;Φ)ε,N∥Lp < ∞ and such that M∗
1( f ;Φ)ε,N ↑ M∗

1( f ;Φ) as ε ↓ 0 and we prove
(2.1.24) with M∗

1( f ;Φ)ε,N in place of M∗
1( f ;Φ). In other words we prove

∥∥M∗
1( f ;Φ)ε,N∥∥p

Lp ≤C′
2(n, p,Φ ,N)p∥∥M( f ;Φ)

∥∥p
Lp +

1
2

∥∥M∗
1( f ;Φ)ε,N∥∥p

Lp , (2.1.25)

where there is an additional dependence on N in the constant C′
2(n, p,Φ ,N), but

there is no dependence on ε . The M∗
1( f ;Φ)ε,N are defined as follows: for a bounded

distribution f in S ′(Rn) such that M( f ;Φ) ∈ Lp we define

M∗
1( f ;Φ)ε,N(x) = sup

0<t< 1
ε

sup
|y−x|<t

∣∣(Φt ∗ f )(y)
∣∣( t

t + ε

)N 1
(1+ ε|y|)N .

We first show that M∗
1( f ;Φ)ε,N lies in Lp(Rn)∩ L∞(Rn) if N is large enough

depending on f . Indeed, using that (Φt ∗ f )(x) = ⟨ f ,Φt(x−·)⟩ and the fact that f is
in S ′(Rn), we obtain constants C f and m = m f such that:

|(Φt ∗ f )(y)| ≤ C f ∑
|γ|≤m,|β |≤m

sup
w∈Rn

|wγ(∂ β
Φt)(y−w)|

≤ C f ∑
|β |≤m

sup
z∈Rn

(1+ |y|m + |z|m)|(∂ β
Φt)(z)|

≤ C f (1+ |y|m) ∑
|β |≤m

sup
z∈Rn

(1+ |z|m)|(∂ β
Φt)(z)|

≤ C f
(1+ |y|m)

min(tn, tn+m) ∑
|β |≤m

sup
z∈Rn

(1+ |z|m)|(∂ β
Φ)(z/t)|
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≤ C f
(1+ |y|)m

min(tn, tn+m)
(1+ tm) ∑

|β |≤m
sup
z∈Rn

(1+ |z/t|m)|(∂ β
Φ)(z/t)|

≤ C f ,Φ(1+ ε|y|)m
ε
−m(1+ tm)(t−n + t−n−m) .

Multiplying by ( t
t+ε

)N(1+ ε|y|)−N for some 0 < t < 1
ε

and |y− x|< t yields

∣∣(Φt ∗ f )(y)
∣∣( t

t + ε

)N 1
(1+ ε|y|)N ≤C f ,Φ

ε−m−N(1+ ε−m)(εn−N + εn+m−N)

(1+ ε|y|)N−m ,

and using that 1+ ε|y| ≥ 1
2 (1+ ε|x|), we obtain for some C′′( f ,Φ ,ε,n,m,N)< ∞,

M∗
1( f ;Φ)ε,N(x)≤ C′′( f ,Φ ,ε,n,m,N)

(1+ ε|x|)N−m .

Taking N > m+ n/p, we have that M∗
1( f ;Φ)ε,N lies in Lp(Rn). This choice of N

depends on m and hence on the distribution f .
We now introduce functions

U( f ;Φ)ε,N(x) = sup
0<t< 1

ε

sup
|y−x|<t

t
∣∣∇(Φt ∗ f )(y)

∣∣( t
t + ε

)N 1
(1+ ε|y|)N

and

V ( f ;Φ)ε,N(x) = sup
0<t< 1

ε

sup
y∈Rn

∣∣(Φt ∗ f )(y)
∣∣( t

t + ε

)N 1
(1+ ε|y|)N

(
t

t + |x− y|

)[ 2n
p ]+1

.

Let C(n) = ∥M∥L2(Rn)→L2(Rn), where M is the Hardy–Littlewood maximal operator.
We need the norm estimate∥∥V ( f ;Φ)ε,N∥∥

Lp ≤C(n)
2
p
∥∥M∗

1( f ;Φ)ε,N∥∥
Lp (2.1.26)

and the pointwise estimate

U( f ;Φ)ε,N ≤ A(n, p,Φ ,N)V ( f ;Φ)ε,N , (2.1.27)

where

A(Φ ,N,n, p) = 2[
2n
p ]+1

n

∑
j=1

C0(∂ jΦ ,N +[ 2n
p ]+1)NN+[ 2n

p ]+1(∂ jΦ) .

To prove (2.1.26) we observe that when z ∈ B(y, t)⊆ B(x, |x− y|+ t) we have∣∣(Φt ∗ f )(y)
∣∣( t

t + ε

)N 1
(1+ ε|y|)N ≤ M∗

1( f ;Φ)ε,N(z) ,


