where A_k^t is the transpose of A_k . But $(A_k^t)^{-1} = A_k^t$ and $|A_k^t \vec{y}| \approx |\vec{y}|$; thus we have $w_\gamma(A_k^t \vec{y}) \approx w_\gamma(\vec{y})$. Therefore, by another change of variables, condition (7.5.37) is equivalent to

$$\sup_{j\in\mathbf{Z}}\int_{(\mathbf{R}^n)^m} \left| \left[\sigma(2^j \vec{\xi}) \widehat{\Psi_k}(\xi) \right]^{\widehat{}}(\vec{y}) \right|^2 w_{\gamma}(\vec{y}) \, d\vec{y} < \infty.$$
(7.5.38)

Thus, condition (7.5.26) for σ^{*k} holds.

We now have that (7.5.26) holds for σ^{*k} for all Ψ in $\mathscr{S}_*((\mathbf{R}^n)^m)$. Theorem 7.5.5 implies that $(T_{\sigma})^{*k}$, the *k*th adjoint of T_{σ} , is bounded from $L^{p_1}(\mathbf{R}^n) \times \cdots \times L^{p_m}(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$ whenever $2 < p_j < \infty$, in particular when $2 \le m < p_j < \infty$. In this case, each $(T_{\sigma})^{*k}$ is bounded from $L^{p_1}(\mathbf{R}^n) \times \cdots \times L^{p_m}(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$, with 1 . $By duality we obtain that <math>T_{\sigma}$ is bounded from $L^{p_1}(\mathbf{R}^n) \times \cdots \times L^{p_m}(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$, where $m < p_j < \infty$ when $j \ne k$ and $1 < p_k < m/(m-1)$. This is also valid when m = 1.

We now have boundedness for T_{σ} from $L^{q_1}(\mathbf{R}^n) \times \cdots \times L^{q_m}(\mathbf{R}^n)$ to $L^q(\mathbf{R}^n)$ in the following m + 1 cases: (a) when all indices q_j are near infinity and (b) when the m-1 indices q_j , $j \neq k$ are near infinity and q_k is near 1 for all $k \in \{1, \dots, m\}$. Applying Corollary 7.2.4 we obtain that T_{σ} is bounded from $L^{p_1}(\mathbf{R}^n) \times \cdots \times L^{p_m}(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$ for indices p_j satisfying $1 < p_1, \dots, p_m, p < \infty$.

7.5.4 Proof of Main Result

In this section we discuss the proof of Theorem 7.5.5.

Proof. For each j = 1, ..., m we let R_j be the set of points $(\xi_1, ..., \xi_m)$ in $(\mathbf{R}^n)^m$ such that $|\xi_j| = \max\{|\xi_1|, ..., |\xi_m|\}$. For j = 1, ..., m we introduce nonnegative smooth functions ϕ_j on $[0, \infty)^{m-1}$ that are supported in $[0, \frac{11}{10}]^{m-1}$ such that

$$1 = \sum_{j=1}^{m} \phi_j \Big(\frac{|\xi_1|}{|\xi_j|}, \dots, \frac{\overline{|\xi_j|}}{|\xi_j|}, \dots, \frac{|\xi_m|}{|\xi_j|} \Big)$$

for all $(\xi_1, ..., \xi_m) \neq 0$, with the understanding that the variable with the hat is missing. These functions introduce a partition of unity of $(\mathbf{R}^n)^m \setminus \{0\}$ subordinate to a conical neighborhood of the region R_i . See Exercise 7.5.4.

Each region R_i can be written as the union of sets

$$R_{j,k} = \left\{ (\xi_1, \dots, \xi_m) \in R_j : |\xi_k| \ge |\xi_s| \quad \text{for all } s \neq j \right\}$$

over k = 1, ..., m. We need to work with a finer partition of unity, subordinate to a conical region of each $R_{j,k}$. To achieve this, for each j we introduce smooth functions $\phi_{j,k}$ on $[0,\infty)^{m-2}$ supported in $[0,\frac{11}{10}]^{m-2}$ such that