7.5 Multilinear Multiplier Theorems

since the intersection of the annuli $\frac{6}{7}2^{k+b_1} \le |\xi| \le 2^{k+b_2+1}$ and $2^{b_1+l} \le |\xi| \le 2^{b_2+l}$ has measure zero if $l = r \mod q$, $k = r \mod q$, and l is not equal to $k \mod q$. The function G_r lies in L^2 by the assumption $\sum_k ||F_k||_{L^2}^2 < \infty$, and thus part (a) yields that

$$\|G_r\|_{L^p} \le c(n, p, b_1, b_2, \Psi) \| \Big(\sum_{k=r \mod q} |\Delta_k^{\Omega}(G_r)|^2 \Big)^{1/2} \|_{L^p}.$$

This inequality, combined with (7.5.13), implies (7.5.10), with G_r in place of $\sum_{k \in \mathbb{Z}} F_k$. Summing over $r \in \{0, 1, \dots, q-1\}$ yields (7.5.10) with a bigger constant.

7.5.2 Coifman-Meyer Method

In this subsection we describe a method to obtain boundedness for a bilinear multiplier operator using Fourier series expansions.

Theorem 7.5.3. Suppose that a bounded function σ on $(\mathbf{R}^n)^2 \setminus \{(0,0)\}$ satisfies

$$\partial^{\alpha_1} \partial^{\alpha_2} \sigma(\xi_1, \xi_2) \Big| \le C_{\alpha_1, \alpha_2} (|\xi_1| + |\xi_2|)^{-(|\alpha_1| + |\alpha_2|)}$$
(7.5.14)

for all $(\xi_1, \xi_2) \neq (0,0)$ and all multi-indices α_1, α_2 , with $|\alpha_1| + |\alpha_2| \leq 2n$. Given p_1, p_2, p such that $1 < p_1, p_2 \leq \infty$ and $1/2 satisfying <math>1/p = 1/p_1 + 1/p_2$, the bilinear operator T_{σ} is bounded from $L^{p_1}(\mathbf{R}^n) \times L^{p_2}(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$.

Proof. We first assume that $p_1, p_2 < \infty$. We fix a Schwartz function Ψ whose Fourier transform is nonnegative, supported in the set $\{\xi \in \mathbf{R}^n : \frac{6}{7} \le |\xi| \le 2\}$, is equal to 1 on the set $\{\xi \in \mathbf{R}^n : 1 \le |\xi| \le \frac{12}{7}\}$, and satisfies

$$\sum_{j \in \mathbf{Z}} \widehat{\Psi}(\xi/2^j) = 1 \tag{7.5.15}$$

for all $\xi \neq 0$. We set $\widehat{\Phi}(\xi) = \sum_{j \leq 0} \widehat{\Psi}(2^{-j}\xi)$ and define $\widehat{\Phi}(0) = 1$. Then $\widehat{\Phi}(\xi)$ is a smooth bump with compact support that is equal to 1 when $|\xi| \leq \frac{12}{7}$ and is equal to zero when $|\xi| \geq 2$.

We introduce the Littlewood–Paley operators Δ_j^{Ψ} associated with Ψ via $\Delta_j^{\Psi}(f) = f * \Psi_{2^{-j}}$, and we fix Schwartz functions f_1, f_2 on \mathbb{R}^n . We express each f_j as

$$f_j = \sum_{k \in \mathbf{Z}} \Delta_k^{\Psi}(f_j)$$

where the sum is rapidly converging. We write

$$T_{\sigma}(f_1, f_2) = \sum_{k \in \mathbf{Z}} \left[T_{\sigma_k^1}(f_1, f_2) + T_{\sigma_k^2}(f_1, f_2) + T_{\sigma_k^3}(f_1, f_2) \right],$$
(7.5.16)