7.2 Multilinear Interpolation

Then for all finitely simple functions f_k on X_k we have

$$\left\| T(f_1, \dots, f_m) \right\|_{L^q} \le M_0^{1-\theta} M_1^{\theta} \left\| f_1 \right\|_{L^{p_1}} \cdots \left\| f_m \right\|_{L^{p_m}}.$$
(7.2.62)

Moreover, when $p_1, \ldots, p_m < \infty$, the operator T_{θ} admits a unique bounded extension from $L^{p_1}(X_1, \mu_1) \times \cdots \times L^{p_m}(X_m, \mu_m)$ to $L^q(Y, \mathbf{v})$.

Proof. Take $T_z = T$ in Theorem 7.2.9, and use Exercise 1.3.8 in [156].

7.2.5 Multilinear Interpolation between Adjoint Operators

In this subsection we discuss a result that allows one to interpolate from a single estimate known for an operator and its adjoints. This theorem is useful in the setting where there is no duality, such as when an operator maps into L^q for q < 1. For a number $q \in (0,\infty)$ set q' = q/(q-1) when $q \neq 1$ and $1' = \infty$.

Theorem 7.2.12. Let 0 , <math>A, B > 0, and let f be a measurable function on a σ -finite measure space (X, μ) .

(i) Suppose that $||f||_{L^{p,\infty}} \leq A$. Then for every measurable set E of finite measure there exists a measurable subset E' of E with $\mu(E') \geq \mu(E)/2$ such that f is bounded on E' and

$$\left| \int_{E'} f \, d\mu \right| \le 2^{\frac{1}{p}} A \, \mu(E)^{1 - \frac{1}{p}} \,. \tag{7.2.63}$$

(ii) Suppose that a measurable function f on X has the property that for any measurable subset E of X, with $\mu(E) < \infty$, there is a measurable subset E' of E, with $\mu(E') \ge \mu(E)/2$, such that f is integrable on E' and

$$\left|\int_{E'} f d\mu\right| \leq B\mu(E)^{1-\frac{1}{p}}.$$

Then we have that

$$\|f\|_{L^{p,\infty}} \le B2^{\frac{2}{p}+\frac{3}{2}}.$$
(7.2.64)

Proof. Define $E' = E \setminus \{|f| > A 2^{\frac{1}{p}} \mu(E)^{-\frac{1}{p}}\}$. Since the set $\{|f| > A 2^{\frac{1}{p}} \mu(E)^{-\frac{1}{p}}\}$ has measure at most $\mu(E)/2$, it follows that $\mu(E') \ge \mu(E)/2$. Obviously, (7.2.63) holds for this choice of E'. This proves (i).

To prove (ii), write $X = \bigcup_{n=1}^{\infty} X_n$, with $\mu(X_n) < \infty$. Given $\alpha > 0$, note that the measurable set $\{|f| > \alpha\}$ is contained in

$$\left\{\operatorname{Re} f > \frac{\alpha}{\sqrt{2}}\right\} \cup \left\{\operatorname{Im} f > \frac{\alpha}{\sqrt{2}}\right\} \cup \left\{\operatorname{Re} f < -\frac{\alpha}{\sqrt{2}}\right\} \cup \left\{\operatorname{Im} f < -\frac{\alpha}{\sqrt{2}}\right\}.$$
(7.2.65)

Let E_n be any of the preceding four sets intersected with X_n . By hypothesis, there is a measurable subset E'_n of E_n with measure at least $\mu(E_n)/2$. Then

$$\frac{\alpha}{2\sqrt{2}}\,\mu(E_n) \le \left|\int_{E'_n} f\,d\mu\right| \le B\,\mu(E_n)^{1-\frac{1}{p}}$$