implies that $f \in \mathscr{C}^{|\alpha|}$ for all $|\alpha| < \gamma$ and $\partial^{\alpha} f$ are bounded functions. It is straightforward to check the identity $\Delta_{j}^{\Psi}(\partial^{\alpha} f) = 2^{j|\alpha|} \Delta_{j}^{\partial^{\alpha} \Psi}(f)$. Notice that

$$2^{j(\gamma-|\alpha|)}\Delta_{i}^{\Psi}(\partial^{\alpha}f) = 2^{j\gamma}\Delta_{i}^{\partial^{\alpha}\Psi}(\Delta_{i-1}^{\Psi} + \Delta_{i}^{\Psi} + \Delta_{i+1}^{\Psi})(f), \qquad (1.4.32)$$

and from this it easily follows that

$$\sup_{j\geq 1} 2^{j(\gamma-|\alpha|)} \left\| \Delta_j^{\Psi}(\partial^{\alpha}f) \right\|_{L^{\infty}} \leq (2^{\gamma}+2) \left\| \partial^{\alpha}\Psi \right\|_{L^1} \sup_{j\geq 1} 2^{j\gamma} \left\| \Delta_j^{\Psi}(f) \right\|_{L^{\infty}} < \infty. \quad (1.4.33)$$

Additionally, note that $S_0^{\Phi}(\partial^{\alpha}f) = \Phi * (\partial^{\alpha}f) = \partial^{\alpha}\Phi * f = \widehat{\partial^{\alpha}\Phi} * (\Phi + \Psi_{2^{-1}}) * f$, since the function $\widehat{\Phi} + \widehat{\Psi_{2^{-1}}}$ is equal to 1 on the support of $\widehat{\partial^{\alpha}\Phi}$. Thus

$$\begin{split} \left\|S_0^{\varPhi}(\partial^{\alpha}f)\right\|_{L^{\infty}} &\leq \left\|\partial^{\alpha}\Phi\right\|_{L^1} \!\left(\left\|\Phi*f\right\|_{L^{\infty}} \!+ \left\|\Psi_{2^{-1}}*f\right\|_{L^{\infty}}\right) \\ &\leq \left\|\partial^{\alpha}\Phi\right\|_{L^1} \!\left(\left\|S_0^{\varPhi}(f)\right\|_{L^{\infty}} \!+ \!\sup_{j\geq 1} \left\|\Delta_j^{\varPsi}(f)\right\|_{L^{\infty}}\right), \end{split}$$

which, combined with (1.4.33), yields (1.4.31) for all $|\alpha| < \gamma$.

Corollary 1.4.12. *Let* $\gamma > 0$ *and* $f \in \Lambda_{\gamma}(\mathbf{R}^n)$. *Then*

$$||f||_{\Lambda_{\gamma}} \approx ||f||_{L^{\infty}} + \sum_{|\alpha| = \lceil |\gamma| \rceil} ||\partial^{\alpha} f||_{\Lambda_{\gamma - [\lceil \gamma \rceil]}}. \tag{1.4.34}$$

Proof. One direction is a consequence of Corollary 1.4.11. For the other direction (\lesssim) , we smoothly decompose $\widehat{\Psi} = \sum_{k=1}^n \widehat{\Psi^{(k)}}$ in (1.4.25) such that for ξ in the support of a given $\widehat{\Psi^{(k)}}$ we have $\xi_k \neq 0$. Introducing $\widehat{\zeta}_k(\xi) = \widehat{\Psi^{(k)}}(\xi)\xi_k^{-[[\gamma]]}$ write

$$\sup_{j\geq 1} 2^{j\gamma} \|\Delta_{j}^{\Psi}(f)\|_{L^{\infty}} \leq C \sum_{k=1}^{n} \sup_{j\geq 1} 2^{j\gamma} 2^{-j[[\gamma]]} \|\Delta_{j}^{\zeta_{k}}(\partial_{k}^{[[\gamma]]}f)\|_{L^{\infty}} \\
\leq C \sum_{|\alpha|=[[\gamma]]} \sup_{j\geq 1} 2^{j(\gamma-[[\gamma]])} \|\Delta_{j}^{\Psi_{*}}\Delta_{j}^{\zeta_{k}}(\partial^{\alpha}f)\|_{L^{\infty}}, \qquad (1.4.35)$$

where we set $\widehat{\Psi}_*(\xi) = \widehat{\Psi}(2\xi) + \widehat{\Psi}(\xi) + \widehat{\Psi}(\frac{\xi}{2})$, which is equal to 1 on the support of $\widehat{\zeta}_k(\xi)$. As convolution with ζ_k is a bounded operator on L^{∞} , using (1.4.23), we obtain that (1.4.35) is at most the expression on the right in (1.4.34).

We end this section by noting that the specific choice of the functions Ψ and Φ is unimportant in the Littlewood–Paley characterization of the spaces Λ_{γ} . In particular, if we know (1.4.25) and (1.4.8) for some choice of Littlewood–Paley operators $\Delta_{j}^{\widetilde{\Psi}}$ and some Schwartz function $\widetilde{\Phi}$ whose Fourier transform is supported in a neighborhood of the origin, then (1.4.25) and (1.4.8) also hold for our fixed Δ_{j}^{Ψ} and Φ .

Exercises

1.4.1. Fix $k \in \mathbf{Z}^+$, $\alpha_1, \ldots, \alpha_n \in \mathbf{Z}^+ \cup \{0\}$, and $\gamma > 0$. Set $|\alpha| = \alpha_1 + \cdots + \alpha_n$. (a) Let $Q(x) = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ be a monomial on \mathbf{R}^n of degree $|\alpha|$. Define $C(k, m) = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} j^m$ for $m \in \mathbf{Z}^+$. Show that when $|\alpha| \ge k$ for all $x, h \in \mathbf{R}^n$ we have

$$D_h^k(Q)(x) = \sum_{\substack{\beta \leq \alpha \\ |\beta| > k}} {\alpha_1 \choose \beta_1} \cdots {\alpha_n \choose \beta_n} C(k, |\beta|) h^{\beta} x^{\alpha - \beta}.$$