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where we used the boundedness of the Carleson operator C from Lr to Lr.
We turn to the corresponding estimate for B2. We have
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This completes the proof of estimate (6.3.8). We now focus attention to the proof
of (6.3.9). We derive estimate (6.3.9) as a consequence of Theorem 3.4.5, provided
we have that ∥∥Md(C ( f ))
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Lr(w) < ∞ . (6.3.10)

Unfortunately, the finiteness estimate (6.3.10) for general functions f in Lp(w) can-
not be easily deduced without a priori knowledge of the sought estimate (6.3.4) for
p = r. However, we can show the validity of (6.3.10) for functions f with compact
support and weights w ∈ Ap that are bounded. This argument requires a few tech-
nicalities, which we now present. For a fixed constant B we introduce a truncated
Carleson operator

C B( f ) = sup
|ξ |≤B

|H(Mξ ( f ))| .

Next we work with a weight w in Ap that is bounded. In fact, we work with wk =
min(w,k), which satisfies

[wk]Ap ≤ cp[w]Ap

for all k ≥ 1 (see Exercise 7.1.8 in [156]). Finally, we take f = h to be a smooth
function with support contained in an interval [−R,R]. Then for |ξ | ≤ B we have
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