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We apply (6.2.7) to the pair (E j
α ,F) for any j = 1,2,3,4. We find a subset (E j
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Case 1: α > 4C′. If |E j
α | > |F |, setting t = |E j

α |/|F | > 1 and using the fact that
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t (1+ log t) = 1, we obtain that (6.2.10) fails. In this case we must there-

fore have that |E j
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Case 2: α ≤ 4C′. If |E j
α |> |F |, we use the elementary fact that if t > 1 satisfies
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Taking t = |E j
α |/|F | and B = 4C′ in (6.2.10) yields
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If |E j
α | ≤ |F |, then we use (6.2.9), but we note that for some constant c′ > 1 we have

ee−
1

4C′ α ≤ c′
8C′

α

(
1+ log

8C′

α

)
whenever α ≤ 4C′. Thus, when α ≤ 4C′, we always have

|{|ΠN(χF)|> 4α}| ≤ c′
32C′

α
|F |
(

1+ log
8C′

α

)
. (6.2.13)

Combining (6.2.11) and (6.2.13), we obtain (6.2.1) with ΠN in place of C . Then
(6.2.6) yields (6.2.1) with CN in place of C and this suffices for the proof of the
statement in part (a) of the theorem by a limiting argument, as observed before.


