1.4 Lipschitz Spaces

and thus

$$egin{aligned} &|\langle\partial^lpha h-u_lpha, arphi
angle|&\leq |\langle\partial^lpha h-\partial^lpha h_k, arphi
angle|+|\langle\partial^lpha h_k-u_lpha, arphi
angle|\ &= |\langle h-h_k,\partial^lpha arphi
angle|+|\langle\partial^lpha h_k-u_lpha, arphi
angle|$$

Since ε was arbitrary, we deduce that $\partial^{\alpha} h = u_{\alpha}$, in particular $h \in \mathscr{C}^{N}$.

Corollary 1.4.8. Any function f in $\dot{\Lambda}_{\gamma}$ lies in $\mathscr{C}^{|\beta|}$ for any $|\beta| < \gamma$, and its derivatives $\partial^{\beta} f$ lie in $\dot{\Lambda}_{\gamma-|\beta|}$ and satisfy

$$\left\|\partial^{\beta}f\right\|_{\dot{\Lambda}_{\gamma-|\beta|}} \leq C_{n,\gamma,\beta}\left\|f\right\|_{\dot{\Lambda}_{\gamma}}.$$
(1.4.21)

Proof. We proved in Theorem 1.4.6 that if f lies in $\dot{\Lambda}_{\gamma}$, then (1.4.7) holds, and that (1.4.7) implies that there exists a polynomial Q such that f - Q lies in $\mathscr{C}[[\gamma]]$ and in $\dot{\Lambda}_{\gamma}$. It follows that f lies in $\mathscr{C}[[\gamma]]$. It also follows that Q lies in $\dot{\Lambda}_{\gamma}$, and this imposes a restriction on the degree of Q; in view of the result of Exercise 1.4.1, we have that Q must have degree at most $[\gamma]$; thus, $f \equiv f - Q$ in the space $\mathscr{S}' / \mathscr{P}_{[\gamma]}$, i.e., they belong to the same equivalence class.

Let Ψ be a Schwartz function on \mathbb{R}^n whose Fourier transform is supported in $1 - \frac{1}{7} \leq |\xi| \leq 2$ and is equal to one on $1 \leq |\xi| \leq 2 - \frac{2}{7}$. Given a multi-index β with $|\beta| < \gamma$, we denote by $\Delta_j^{\partial^{\beta}\Psi}$ the Littlewood–Paley operator associated with $(\partial^{\beta}\Psi)_{2^{-j}}$. Then one has

$$\Delta_i^{\Psi}(\partial^{\beta} f) = 2^{j|\beta|} \Delta_i^{\partial^{\beta} \Psi}(f)$$

for all $f \in \Lambda_{\gamma}$. One can easily check that

$$2^{j(\gamma-|\beta|)}\Delta_j^{\Psi}(\partial^{\beta}f) = 2^{j\gamma}\Delta_j^{\partial^{\beta}\Psi}(\Delta_{j-1}^{\Psi} + \Delta_j^{\Psi} + \Delta_{j+1}^{\Psi})(f)\,,$$

and from this it easily follows that

$$\sup_{j\in \mathbf{Z}} 2^{j(\gamma-|\beta|)} \left\| \Delta_j^{\Psi}(\partial^{\beta} f) \right\|_{L^{\infty}} \leq (2^{\gamma}+1+2^{-\gamma}) \left\| \partial^{\beta} \Psi \right\|_{L^1} \sup_{j\in \mathbf{Z}} 2^{j\gamma} \left\| \Delta_j^{\Psi}(f) \right\|_{L^{\infty}},$$

which implies that $\partial^{\beta} f$ lies in $\dot{\Lambda}_{\gamma-|\beta|}$ when $|\beta| < \gamma$.

1.4.3 Littlewood–Paley Characterization of Inhomogeneous Lipschitz Spaces

We have seen that quantities involving the Littlewood–Paley operators Δ_j characterize homogeneous Lipschitz spaces. We now address the same question for inhomogeneous Lipschitz spaces.

We fix a radial Schwartz function Ψ whose Fourier transform $\widehat{\Psi}$ is nonnegative, is supported in the annulus $1 - \frac{1}{7} \le |\xi| \le 2$, is equal to one on the annulus $1 \le |\xi| \le 2 - \frac{2}{7}$, and satisfies

$$\sum_{j\in\mathbf{Z}}\widehat{\Psi}(2^{-j}\xi)=1$$

for all $\xi \neq 0$. We define a Schwartz function Φ introduced by setting

$$\widehat{\Phi}(\xi) = \begin{cases} \sum_{j \le 0} \widehat{\Psi}(2^{-j}\xi) & \text{when } \xi \ne 0, \\ 1 & \text{when } \xi = 0. \end{cases}$$
(1.4.22)

Note that $\widehat{\Phi}(\xi)$ is equal to 1 for $|\xi| \leq 2 - \frac{2}{7}$ and vanishes when $|\xi| \geq 2$. Finally, we define $\Delta_j^{\Psi}(f) = \Psi_{2^{-j}} * f$ and $S_0^{\Phi}(f) = \Phi * f$ for any $f \in \mathscr{S}'(\mathbf{R}^n)$.

Theorem 1.4.9. Let Ψ , Φ , Δ_j^{Ψ} , and S_0^{Φ} be as above, and let $\gamma > 0$. Then there is a constant $C = C(n, \gamma)$ such that for every function f in Λ_{γ} the following estimate holds:

$$\|S_0^{\Phi}(f)\|_{L^{\infty}} + \sup_{j \ge 1} 2^{j\gamma} \|\Delta_j^{\Psi}(f)\|_{L^{\infty}} \le C \|f\|_{\Lambda_{\gamma}}.$$
 (1.4.23)

Conversely, suppose that a tempered distribution f satisfies

$$\left\| S_0^{\Phi}(f) \right\|_{L^{\infty}} + \sup_{j \ge 1} 2^{j\gamma} \left\| \Delta_j^{\Psi}(f) \right\|_{L^{\infty}} < \infty.$$
(1.4.24)

Then f is in $\mathscr{C}^{[[\gamma]]}$, and the derivatives $\partial^{\alpha} f$ are bounded for all $|\alpha| \leq [[\gamma]]$. Moreover, f lies in Λ_{γ} , and there is a constant $C' = C'(n, \gamma)$ such that

$$\|f\|_{\Lambda_{\gamma}} \le C' \left(\|S_0^{\Phi}(f)\|_{L^{\infty}} + \sup_{j \ge 1} 2^{j\gamma} \|\Delta_j^{\Psi}(f)\|_{L^{\infty}} \right).$$
(1.4.25)

In particular, functions in Λ_{γ} are in $\mathscr{C}^{[\gamma]}$ and have bounded derivatives up to order $[\gamma]$. Also,

$$\left\|f\right\|_{\Lambda_{\gamma}} \approx \sum_{|\alpha| < [\gamma]} \left\|\partial^{\alpha} f\right\|_{L^{\infty}} + \sum_{|\alpha| = [\gamma]} \left\|\partial^{\alpha} f\right\|_{\Lambda_{\gamma-[\gamma]}}.$$

Proof. The proof of (1.4.23) is immediate since we trivially have

$$\left\|S_0^{\mathbf{\Phi}}(f)\right\|_{L^{\infty}} = \left\|f * \mathbf{\Phi}\right\|_{L^{\infty}} \le \left\|\mathbf{\Phi}\right\|_{L^1} \left\|f\right\|_{L^{\infty}} \le C \left\|f\right\|_{\Lambda_{\mathbf{\gamma}}}$$

and, in view of estimate (1.4.11), we have

$$\sup_{j\geq 1} 2^{j\gamma} \left\| \Delta_j^{\Psi}(f) \right\|_{L^{\infty}} \leq C \left\| f \right\|_{\Lambda_{\gamma}} \leq C \left\| f \right\|_{\Lambda_{\gamma}}.$$

1.4 Lipschitz Spaces

We may therefore focus on the proof of the converse estimate (1.4.25). We fix $f \in \mathscr{S}'(\mathbf{R}^n)$ which satisfies (1.4.24). We introduce Schwartz functions ζ, η such that

$$\widehat{\zeta}(\xi)^2 + \sum_{j=1}^{\infty} \widehat{\eta} (2^{-j}\xi)^2 = 1$$

and such that $\widehat{\eta}$ is supported in the annulus $\frac{2}{5} \leq |\xi| \leq 1$ and $\widehat{\zeta}$ is supported in the ball $|\xi| \leq 1$. We associate Littlewood–Paley operators Δ_j^{η} given by convolution with the functions $\eta_{2^{-j}}$ and we let $\Delta_j^{\Theta} = \Delta_{j-1}^{\Psi} + \Delta_j^{\Psi} + \Delta_{j+1}^{\Psi}$. Using this identity and (1.4.24) we obtain for some $C_0 < \infty$

$$\|\Delta_{j}^{\Theta}(f)\|_{L^{\infty}} \le C_0 2^{-j\gamma}.$$
(1.4.26)

Note that $\widehat{\Phi}$ is equal to one on the support of $\widehat{\zeta}$. Moreover, $\Delta_j^{\Theta} \Delta_j^{\eta} = \Delta_j^{\eta}$; hence, for our given tempered distribution f we have the identity

$$f = \zeta * \zeta * \Phi * f + \sum_{j=1}^{\infty} \eta_{2^{-j}} * \eta_{2^{-j}} * \Delta_j^{\Theta}(f), \qquad (1.4.27)$$

where the series converges in $\mathscr{S}'(\mathbf{R}^n)$, in view of the result of Exercise 1.1.5.

But this series also converges in L^{∞} since, in view of (1.4.26),

$$\|\eta_{2^{-j}}*\eta_{2^{-j}}*\Delta_{j}^{\Theta}(f)\|_{L^{\infty}} \leq \|\eta*\eta\|_{L^{1}}\|\Delta_{j}^{\Theta}(f)\|_{L^{\infty}} \leq C_{0}2^{-j\gamma}$$

and thus *f* is a continuous and bounded function. Also, for all $|\alpha| < \gamma$ we have

$$\|\partial^{\alpha}(\eta_{2^{-j}}*\eta_{2^{-j}}*\Delta_{j}^{\Theta}(f))\|_{L^{\infty}} \leq 2^{j|\alpha|} \|\partial^{\alpha}(\eta*\eta)\|_{L^{1}} \|\Delta_{j}^{\Theta}(f)\|_{L^{\infty}} \leq C_{0}2^{-j(\gamma-|\alpha|)},$$

and thus summing over *j* yields a finite constant. Proposition 1.1.5 applies and yields that our given tempered distribution *f* is a $\mathscr{C}^{|\alpha|}$ function whose derivatives are bounded for all $|\alpha| < \gamma$, or equivalently, for all $|\alpha| \le [[\gamma]]$.

It remains to show that the function *f* is in Λ_{γ} . With $k = [\gamma]$ we write

$$\frac{D_{h}^{k+1}(f)}{|h|^{\gamma}} = \zeta * \frac{D_{h}^{k+1}(\zeta)}{|h|^{\gamma}} * \Phi * f + \sum_{j=1}^{\infty} \eta_{2^{-j}} * \frac{D_{h}^{k+1}(\eta_{2^{-j}})}{|h|^{\gamma}} * \Delta_{j}^{\Theta}(f).$$
(1.4.28)

We use Proposition 1.4.5 to estimate the L^{∞} norm of the term $\zeta * \frac{D_{h}^{k+1}(\zeta)}{|h|^{\gamma}} * \Phi * f$ in the previous sum as follows:

$$\begin{split} \left\| \boldsymbol{\zeta} * \frac{D_{h}^{k+1}(\boldsymbol{\zeta})}{|h|^{\gamma}} * \boldsymbol{\Phi} * f \right\|_{L^{\infty}} &\leq \left\| \frac{D_{h}^{k+1}(\boldsymbol{\zeta})}{|h|^{\gamma}} \right\|_{L^{\infty}} \left\| \boldsymbol{\zeta} * \boldsymbol{\Phi} * f \right\|_{L^{1}} \\ &\leq C' \min\left(\frac{1}{|h|^{\gamma}}, \frac{|h|^{k+1}}{|h|^{\gamma}}\right) \left\| \boldsymbol{\Phi} * f \right\|_{L^{\infty}} \\ &\leq C' \left\| \boldsymbol{\Phi} * f \right\|_{L^{\infty}}. \end{split}$$
(1.4.29)