1.4 Lipschitz Spaces 45

and thus
[(0%h — e, @)| < [(0%h— 0% Iy, @)| + (9"l — ar, 9) |
= |(h—hi, 0% Q)|+ [(0%hy — uq, @) | < €.
Since € was arbitrary, we deduce that d%h = u, in particular 1 € €. O

Corollary 1.4.8. Any function f in /\y lies in €'Pl for any |B| < v, and its derivatives
OB f lie in /'\y_‘[;‘ and satisfy

19P 114 <Caypllfll;, - (1.421)
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Proof. We proved in Theorem 1.4.6 that if f lies in Ay, then (1.4.7) holds, and that
(1.4.7) implies that there exists a polynomial Q such that f — Q lies in %" and in
Ay. It follows that f lies in " It also follows that Q lies in Ay, and this imposes
a restriction on the degree of Q; in view of the result of Exercise 1.4.1, we have that
O must have degree at most []; thus, f = f — Q in the space 5”/3”“,], i.e., they
belong to the same equivalence class.
Let ¥ be a Schwartz function on R" whose Fourier transform is supported in
— 4 <|é| <2 and is equal to one on 1< |£| <2— 2. Given a multi-index 3

with |B| < 7, we denote by Aja ¥ the Littlewood—Paley operator associated with
(0PW),_;. Then one has

i B
AF (9P f) =27PIAT¥ (£)
for all f € Ay. One can easily check that
2BDAY (9P 1) = 277a7 (AF AT + AT (),
and from this it easily follows that

sup2/ PV [[AF (0P £) . < @7+ 1 4+277) | 0P| sup2 ][ AF (£)] -
JEZ JEZ
which implies that 9P f lies in /.\y,‘ p| When |B[ <. O
1.4.3 Littlewood—-Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood—Paley operators A; character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous Lipschitz spaces.
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We fix a radial Schwartz function ¥ whose Fourier transform ¥ is nonnegative,
is supported in the annulus 1 — % < |€| <2, is equal to one on the annulus 1 < |€] <

2— %, and satisfies

Y ¥ UE) =1

jez

for all £ # 0. We define a Schwartz function @ introduced by setting

(&) = {):ff“@(zjg) when 6 70, (1.4.22)

1 when & = 0.

Note that & (&) is equal to 1 for [E] <2 — Z and vanishes when || > 2. Finally, we
define A7 (f) =¥, * f and ST (f) = @ f for any f € .7 (R").

Theorem 1.4.9. Let ¥, @, AF, and S§ be as above, and let y > 0. Then there is
a constant C = C(n,y) such that for every function f in Ay the following estimate
holds:

Il + 52| AT (D] ,- < Cl 1Ly, - (1423)
iz
Conversely, suppose that a tempered distribution f satisfies

ISP +53027 Y (1) < (1424
J=

Then f is in €'\, and the derivatives 0% f are bounded for all |at| < [[y]]. Moreover,
f lies in Ay, and there is a constant C' = C'(n,y) such that

1711, <€ (IE ] +s0p27|AF (£ ) - (1.4.25)
=1

In particular, functions in Ay are in ¢\ and have bounded derivatives up to
order [[7]]. Also;
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Proof. The proof of (1.4.23) is immediate since we trivially have
1T (Dl = 175 @[l < (|1 ([ £l < ClIF N,
and, in view of estimate (1.4.11), we have

ir||AY :
ilzlfl)ZJ HAJ (f)HLoo SCHfH/\y SCHfHAy'
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We may therefore focus on the proof of the converse estimate (1.4.25). We fix
f € "(R") which satisfies (1.4.24). We introduce Schwartz functions {,n such
that

SEWICEHE

and such that 7] is supported in the annulus 2 < || < 1 and Zis supported in the ball
|| < 1. We associate Littlewood-Paley operators An given by convolution with the

functions 1,-, and we let A@ AlP 1+ Al‘u + Al‘u e Usmg this identity and (1.4.24)
we obtain for some Cy < oo

AP (f)|l= < Co2777. (1.4.26)

Note that @ is equal to one on the support of . Moreover, Aj@ A;’ = A?; hence,
for our given tempered distribution f we have the identity

F=Cxlx®xf+ Y MyjxmeixAP(f), (1.4.27)

j=1
where the series converges in .#/(R"), in view of the result of Exercise 1.1.5.
But this series also converges in L™ since, in view of (1.4.26),
1155 %05 % AP (f)l|e= < I+l A7 (f) = < €277,
and thus f is a continuous and bounded function. Also, for all |a| < y we have
10% (135 My + AP ()= < 27| 9% (5 1) |1 | AP ()] < Co2 7710,

and thus summing over j yields a finite constant. Proposition 1.1.5 applies and
yields that our given tempered distribution f is a €!%! function whose derivatives
are bounded for all |¢t| < ¥, or equivalently, for all |a| < [[y]].

It remains to show that the function f is in Ay. With k = [y] we write

Dy (f) _ . D)

— C* k+l(n2 /)
|| ||

*cb*f—l—znz—j*T*Aj@(f)- (1.4.28)
=

k+l
We use Proposition 1.4.5 to estimate the L™ norm of the term { * i h|7§€) xPx fin
the previous sum as follows:

IA

o+ 2

*(p*fHL‘”

k1
|25 1€+ @ £

) 1
C/mm(lhll Ih\ )H(p f” (1.4.29)
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