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and thus

|〈∂ α h−uα ,ϕ〉| ≤ |〈∂ α h−∂
α hk,ϕ〉|+ |〈∂ α hk−uα ,ϕ〉|

= |〈h−hk,∂
α

ϕ〉|+ |〈∂ α hk−uα ,ϕ〉|< ε.

Since ε was arbitrary, we deduce that ∂ α h = uα , in particular h ∈ C N . �

Corollary 1.4.8. Any function f in
.

Λγ lies in C |β | for any |β |< γ , and its derivatives
∂ β f lie in

.
Λγ−|β | and satisfy∥∥∂

β f
∥∥ .

Λγ−|β |
≤Cn,γ,β

∥∥ f
∥∥ .

Λγ
. (1.4.21)

Proof. We proved in Theorem 1.4.6 that if f lies in
.

Λγ , then (1.4.7) holds, and that
(1.4.7) implies that there exists a polynomial Q such that f −Q lies in C [[γ]] and in.
Λγ . It follows that f lies in C [[γ]]. It also follows that Q lies in

.
Λγ , and this imposes

a restriction on the degree of Q; in view of the result of Exercise 1.4.1, we have that
Q must have degree at most [γ]; thus, f ≡ f −Q in the space S ′/P[γ], i.e., they
belong to the same equivalence class.

Let Ψ be a Schwartz function on Rn whose Fourier transform is supported in
1− 1

7 ≤ |ξ | ≤ 2 and is equal to one on 1 ≤ |ξ | ≤ 2− 2
7 . Given a multi-index β

with |β | < γ , we denote by ∆ ∂ βΨ
j the Littlewood–Paley operator associated with

(∂ βΨ)2− j . Then one has

∆
Ψ
j (∂

β f ) = 2 j|β |
∆

∂ βΨ
j ( f )

for all f ∈Λγ . One can easily check that

2 j(γ−|β |)
∆

Ψ
j (∂

β f ) = 2 jγ
∆

∂ βΨ
j (∆Ψ

j−1 +∆
Ψ
j +∆

Ψ
j+1)( f ) ,

and from this it easily follows that

sup
j∈Z

2 j(γ−|β |)∥∥∆
Ψ
j (∂

β f )
∥∥

L∞ ≤ (2γ +1+2−γ)
∥∥∂

β
Ψ
∥∥

L1 sup
j∈Z

2 jγ∥∥∆
Ψ
j ( f )

∥∥
L∞ ,

which implies that ∂ β f lies in
.

Λγ−|β | when |β |< γ . �

1.4.3 Littlewood–Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood–Paley operators ∆ j character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous Lipschitz spaces.
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We fix a radial Schwartz function Ψ whose Fourier transform Ψ̂ is nonnegative,
is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is equal to one on the annulus 1≤ |ξ | ≤
2− 2

7 , and satisfies

∑
j∈Z

Ψ̂(2− j
ξ ) = 1

for all ξ 6= 0. We define a Schwartz function Φ introduced by setting

Φ̂(ξ ) =

{
∑ j≤0Ψ̂(2− jξ ) when ξ 6= 0,
1 when ξ = 0.

(1.4.22)

Note that Φ̂(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. Finally, we

define ∆Ψ
j ( f ) =Ψ2− j ∗ f and SΦ

0 ( f ) = Φ ∗ f for any f ∈S ′(Rn).

Theorem 1.4.9. Let Ψ , Φ , ∆Ψ
j , and SΦ

0 be as above, and let γ > 0. Then there is
a constant C = C(n,γ) such that for every function f in Λγ the following estimate
holds: ∥∥SΦ

0 ( f )
∥∥

L∞ + sup
j≥1

2 jγ∥∥∆
Ψ
j ( f )

∥∥
L∞ ≤C

∥∥ f
∥∥

Λγ
. (1.4.23)

Conversely, suppose that a tempered distribution f satisfies∥∥SΦ
0 ( f )

∥∥
L∞ + sup

j≥1
2 jγ∥∥∆

Ψ
j ( f )

∥∥
L∞ < ∞ . (1.4.24)

Then f is in C [[γ]], and the derivatives ∂ α f are bounded for all |α| ≤ [[γ]]. Moreover,
f lies in Λγ , and there is a constant C′ =C′(n,γ) such that∥∥ f

∥∥
Λγ
≤C′

(∥∥SΦ
0 ( f )

∥∥
L∞ + sup

j≥1
2 jγ∥∥∆

Ψ
j ( f )

∥∥
L∞

)
. (1.4.25)

In particular, functions in Λγ are in C [[γ]] and have bounded derivatives up to
order [[γ]]. Also, ∥∥ f

∥∥
Λγ
≈ ∑
|α|<[γ]

∥∥∂
α f
∥∥

L∞ + ∑
|α|=[γ]

∥∥∂
α f
∥∥

Λγ−[γ]
.

Proof. The proof of (1.4.23) is immediate since we trivially have∥∥SΦ
0 ( f )

∥∥
L∞ =

∥∥ f ∗Φ
∥∥

L∞ ≤
∥∥Φ
∥∥

L1

∥∥ f
∥∥

L∞ ≤C
∥∥ f
∥∥

Λγ
,

and, in view of estimate (1.4.11), we have

sup
j≥1

2 jγ∥∥∆
Ψ
j ( f )

∥∥
L∞ ≤C

∥∥ f
∥∥ .

Λγ
≤C

∥∥ f
∥∥

Λγ
.
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We may therefore focus on the proof of the converse estimate (1.4.25). We fix
f ∈ S ′(Rn) which satisfies (1.4.24). We introduce Schwartz functions ζ ,η such
that

ζ̂ (ξ )2 +
∞

∑
j=1

η̂(2− j
ξ )2 = 1

and such that η̂ is supported in the annulus 2
5 ≤ |ξ | ≤ 1 and ζ̂ is supported in the ball

|ξ | ≤ 1. We associate Littlewood–Paley operators ∆
η

j given by convolution with the
functions η2− j and we let ∆Θ

j = ∆Ψ
j−1 +∆Ψ

j +∆Ψ
j+1. Using this identity and (1.4.24)

we obtain for some C0 < ∞

‖∆Θ
j ( f )‖L∞ ≤C02− jγ . (1.4.26)

Note that Φ̂ is equal to one on the support of ζ̂ . Moreover, ∆Θ
j ∆

η

j = ∆
η

j ; hence,
for our given tempered distribution f we have the identity

f = ζ ∗ζ ∗Φ ∗ f +
∞

∑
j=1

η2− j ∗η2− j ∗∆
Θ
j ( f ) , (1.4.27)

where the series converges in S ′(Rn), in view of the result of Exercise 1.1.5.
But this series also converges in L∞ since, in view of (1.4.26),∥∥η2− j ∗η2− j ∗∆

Θ
j ( f )‖L∞ ≤ ‖η ∗η‖L1‖∆Θ

j ( f )‖L∞ ≤C02− jγ ,

and thus f is a continuous and bounded function. Also, for all |α|< γ we have∥∥∂
α(η2− j ∗η2− j ∗∆

Θ
j ( f ))‖L∞ ≤ 2 j|α|‖∂ α(η ∗η)‖L1‖∆Θ

j ( f )‖L∞ ≤C02− j(γ−|α|) ,

and thus summing over j yields a finite constant. Proposition 1.1.5 applies and
yields that our given tempered distribution f is a C |α| function whose derivatives
are bounded for all |α|< γ , or equivalently, for all |α| ≤ [[γ]].

It remains to show that the function f is in Λγ . With k = [γ] we write

Dk+1
h ( f )
|h|γ = ζ ∗ Dk+1

h (ζ )

|h|γ ∗Φ ∗ f +
∞

∑
j=1

η2− j ∗ Dk+1
h (η2− j)

|h|γ ∗∆
Θ
j ( f ) . (1.4.28)

We use Proposition 1.4.5 to estimate the L∞ norm of the term ζ ∗ Dk+1
h (ζ )

|h|γ ∗Φ ∗ f in
the previous sum as follows:∥∥ζ ∗ Dk+1

h (ζ )

|h|γ ∗Φ ∗ f
∥∥

L∞ ≤
∥∥Dk+1

h (ζ )

|h|γ
∥∥

L∞

∥∥ζ ∗Φ ∗ f
∥∥

L1

≤ C′min
( 1
|h|γ ,

|h|k+1

|h|γ
)∥∥Φ ∗ f

∥∥
L∞

≤ C′
∥∥Φ ∗ f

∥∥
L∞ .

(1.4.29)


