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Since all s that appear in the definition of F; satisfy || < (4|J])~!, it follows
that we have the estimate
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(The last inequality follows from Exercise 2.1.14 in [156].) Observe that the maxi-
mal function in (6.1.59) satisfies the property
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Using this property, we obtain
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where M is the Hardy-Littlewood maximal operator. Using the Cauchy—Schwarz
inequality and the boundedness of M on L?(R), we obtain the following estimate:
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Appealing to the result of Exercise 6.1.6(a), we deduce
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The first estimate was also shown in (6.1.46); the same argument applies here, and
the presence of the &’s does not introduce any change. We conclude that
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which is what we needed to prove. This completes the proof of Lemma 6.1.10. [

The proof of the theorem is now complete.



