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Since all s that appear in the definition of F2J satisfy |ωs| ≤ (4|J|)−1, it follows
that we have the estimate

|F2J(x)| ≤ 2 χE(x) sup
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(The last inequality follows from Exercise 2.1.14 in [156].) Observe that the maxi-
mal function in (6.1.59) satisfies the property
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Using this property, we obtain
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where M is the Hardy–Littlewood maximal operator. Using the Cauchy–Schwarz
inequality and the boundedness of M on L2(R), we obtain the following estimate:
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The first estimate was also shown in (6.1.46); the same argument applies here, and
the presence of the εs’s does not introduce any change. We conclude that

Σ22 ≤C |E|M (E;T)|Itop(T)|E (g;T) ,

which is what we needed to prove. This completes the proof of Lemma 6.1.10. �

The proof of the theorem is now complete.


