with the interpretation that $2^{-1}I_u = \emptyset$. (2^kI_u has the same center as I_u but 2^k times its length.) It follows that for all u in U_{max} there exists an integer $k \ge 0$ such that

$$|E|\frac{\mu}{8}|I_{u}|2^{-k} < \int_{E\cap N^{-1}[\omega_{u}]\cap \left(2^{k}I_{u}\setminus 2^{k-1}I_{u}\right)}\frac{dx}{(1+\frac{|x-c(I_{u})|}{|I_{u}|})^{10}} \leq \frac{|E\cap N^{-1}[\omega_{u}]\cap 2^{k}I_{u}|}{(\frac{4}{5})^{10}(1+2^{k-2})^{10}}.$$

We therefore conclude that

$$\mathbf{U}_{\max} = \bigcup_{k=0}^{\infty} \mathbf{U}_k,$$

where

$$\mathbf{U}_{k} = \{ u \in \mathbf{U}_{\max} : |I_{u}| \le 8 \cdot 5^{10} \, 2^{-9k} \, \mu^{-1} \, |E|^{-1} |E \cap N^{-1}[\boldsymbol{\omega}_{u}] \cap 2^{k} I_{u} | \}$$

The required estimate (6.1.42) will be a consequence of the sequence of estimates

$$\sum_{u \in \mathbf{U}_k} |I_u| \le C 2^{-8k} \mu^{-1}, \qquad k \ge 0.$$
(6.1.43)

We now fix a $k \ge 0$ and we concentrate on (6.1.43). Select an element $v_0 \in \mathbf{U}_k$ such that $|I_{v_0}|$ is the largest possible among elements of \mathbf{U}_k . Then select an element $v_1 \in \mathbf{U}_k \setminus \{v_0\}$ such that the enlarged rectangle $(2^k I_{v_1}) \times \omega_{v_1}$ is disjoint from the enlarged rectangle $(2^k I_{v_0}) \times \omega_{v_0}$ and $|I_{v_1}|$ is the largest possible. Continue this process by induction. At the *j*th step select an element of

$$\mathbf{U}_k \setminus \{v_0, \ldots, v_{j-1}\}$$

such that the enlarged rectangle $(2^k I_{v_j}) \times \omega_{v_j}$ is disjoint from all the enlarged rectangles of the previously selected tiles and the length $|I_{v_j}|$ is the largest possible. This process will terminate after a finite number of steps. We denote by \mathbf{V}_k the set of all selected tiles in \mathbf{U}_k .

We make a few observations. Recall that all elements of \mathbf{U}_k are maximal rectangles in \mathbf{U} and therefore disjoint. For any $u \in \mathbf{U}_k$ there exists a selected $v \in \mathbf{V}_k$ with $|I_u| \leq |I_v|$ such that the enlarged rectangles corresponding to u and v intersect. Let us associate this u to the selected v. Observe that if u and u' are associated with the same selected v, they are disjoint, and since both ω_u and $\omega_{u'}$ contain ω_v , the intervals I_u and $I_{u'}$ must be disjoint. Thus, tiles $u \in \mathbf{U}_k$ associated with a fixed $v \in \mathbf{V}_k$ have disjoint I_u 's and satisfy

$$I_u \subseteq 2^{k+2} I_v$$

Consequently,

$$\sum_{\substack{u \in \mathbf{U}_k \\ u \text{ associated with } v}} |I_u| \le |2^{k+2}I_v| = 2^{k+2}|I_v|.$$