1.4 Lipschitz Spaces

We now write $f_L = f_L^1 + f_L^2$, where

$$f_L^1 = \sum_{j=-L}^{-1} \Delta_j^{\Theta}(f) * \eta_{2^{-j}} * \eta_{2^{-j}}, \qquad f_L^2 = \sum_{j=0}^{L} \Delta_j^{\Theta}(f) * \eta_{2^{-j}} * \eta_{2^{-j}}.$$

It follows from (1.4.13) that with $C'_0 = (2^{\gamma} + 1 + 2^{-\gamma})C_0$ we have

$$\|\Delta_{j}^{\Theta}(f) * \eta_{2^{-j}} * \eta_{2^{-j}}\|_{L^{\infty}} \le \|\Delta_{j}^{\Theta}(f)\|_{L^{\infty}} \|\eta_{2^{-j}} * \eta_{2^{-j}}\|_{L^{1}} \le C_{0}' \|\eta * \eta\|_{L^{1}} 2^{-j\gamma};$$

thus, f_L^2 converges uniformly to a continuous and bounded function g_2 as $L \to \infty$. Also, $\partial^{\beta} f_L^2$ converges uniformly for all $|\beta| < \gamma$ as $L \to \infty$. Using Lemma 1.4.7 we conclude that g_2 is in $\mathscr{C}^{[\gamma]}$ and that $\partial^{\beta} f_L^2$ converges uniformly to $\partial^{\beta} g_2$ as $L \to \infty$ for all $|\beta| < \gamma$.

We now turn our attention to f_L^1 . Obviously, f_L^1 is in \mathscr{C}^{∞} and

$$\partial^{lpha} f^1_L = \sum_{j=-L}^{-1} \Delta^{\Theta}_j(f) * 2^{j|lpha|} (\partial^{lpha} \eta)_{2^{-j}} * \eta_{2^{-j}}.$$

Thus for all multi-indices α with $|\alpha| \ge [\gamma] + 1$ we have

$$\sup_{L \in \mathbf{Z}^+} \|\partial^{\alpha} f_L^1\|_{L^{\infty}} \le \sum_{j=-\infty}^{-1} C_0' 2^{-j\gamma} 2^{j([\gamma]+1)} \|\partial^{\alpha} \eta * \eta\|_{L^1} = c_{\alpha,\gamma} C_0 < \infty.$$
(1.4.19)

Let P_L^d be the Taylor polynomial of f_L^1 of degree d. By Taylor's theorem we have

$$f_L^1(x) - P_L^{[\gamma]}(x) = ([\gamma] + 1) \sum_{|\alpha| = [\gamma] + 1} \frac{x^{\alpha}}{\alpha!} \int_0^1 (1 - t)^{[\gamma]} (\partial^{\alpha} f_L^1)(tx) dt.$$
(1.4.20)

Using (1.4.19), with $|\alpha| \in \{[\gamma] + 1, ..., [\gamma] + |\beta| + 2\}$, we obtain that the sequence $\{\nabla(\partial^{\beta}(f_{L}^{1} - P_{L}^{[\gamma]}))\}_{L=1}^{\infty}$ is uniformly bounded on every ball $\overline{B(0,K)}$; thus, the sequence $\{\partial^{\beta}(f_{L}^{1} - P_{L}^{[\gamma]})\}_{L=1}^{\infty}$ is equicontinuous on every such ball. By the Arzelà–Ascoli theorem, for every K = 1, 2, ... and for every $|\beta| < \gamma$ there is a subsequence of $\{\partial^{\beta}(f_{L}^{1} - P_{L}^{[\gamma]})\}_{L=1}^{\infty}$ that converges uniformly on $\overline{B(0,K)}$. The diagonal subsequence of these subsequences converges uniformly on every compact subset of \mathbf{R}^{n} for all $|\beta| < \gamma$. Hence, there is a continuous function g_{1} on \mathbf{R}^{n} and a subsequence L_{m} of \mathbf{Z}^{+} such that $f_{L_{m}}^{1} - P_{L_{m}}^{[\gamma]} \to g_{1}$ uniformly on compact sets as $m \to \infty$ and $\partial^{\beta}(f_{L_{m}}^{1} - P_{L_{m}}^{[\gamma]})$ converges uniformly on compact sets for all $|\beta| \ge [\gamma]$. Using Lemma 1.4.7, stated at the end of this proof, we deduce that g_{1} is $\mathscr{C}^{[\gamma]}$ and that $\partial^{\beta}(f_{L_{m}}^{1} - P_{L_{m}}^{[\gamma]}) \to \partial^{\beta}g_{1}$ as $m \to \infty$ for all $|\beta| \le [\gamma]$.

Set $g = g_1 + g_2$. It follows from (1.4.20) and from $\sup_{L \in \mathbb{Z}^+} ||f_L^2||_{L^{\infty}} < \infty$ that $|g(x)| \le C_{n,\gamma}C_0(1+|x|)^{[\gamma]+1}$ for all $x \in \mathbb{R}^n$. Thus, g can be viewed as an element of \mathscr{S}' , and one has $f_{L_m} - P_{L_m}^{[\gamma]} \to g$ in $\mathscr{S}'(\mathbb{R}^n)$. Since both g_1 and g_2 are in $\mathscr{C}^{[[\gamma]]}$, it follows that so is g.