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Taking & = N(x), this gives for any x € R
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and hence
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We now apply the L>* quasi-norm on both sides and we use Fatou’s lemma for
weak L?; see Exercise 1.1.12(d) in [156]. Since modulations, translations, and L?-
dilations are isometries on L?, we reduce the sought estimate for the operator in
(6.1.25) to the corresponding estimate for f — Ay ) (f)(x) = Dn(f)(x).

To justify certain algebraic manipulations we fix a finite subset P of D and we
define

Dvp(f)(x) =Y (o oN)X) (f105) ¢s(x). (6.1.28)
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To prove (6.1.27) it suffices to show that there exists a C > 0 such that for all f in
Z(R), all finite subsets P of D, and all real-valued measurable functions N on the
line we have
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The important point is that the constant C in (6.1.29) is independent of f, P, and
the measurable function N. Once (6.1.29) is known, then taking a sequence of sets
P, — D, as L — oo and using the absolute convergence of the series, we obtain
(6.1.27).

To prove (6.1.29) we use duality. In view of the result of Exercises 1.4.12(c) in
[156], it suffices to prove that for all f € .(R) we have
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Using the result of Exercise 1.4.7 in [156], (6.1.30) will follow from the fact that for
all measurable subsets E of the real line with finite measure we have
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We obtain estimate (6.1.31) as a consequence of
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for all f in .#(R), all measurable functions N, all measurable sets E of finite mea-
sure, and all finite subsets P of D. We therefore concentrate on estimate (6.1.32).



