420 6 Time-Frequency Analysis and the Carleson—-Hunt Theorem

where we used an earlier observation about s and s’, the Cauchy—Schwarz inequality,
and the fact that
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which follows from the result in Appendix B.1. To estimate (6.1.10), we use that
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for all z € I;, in view of Theorem 2.1.10 in [156]. Since the preceding estimate holds
for all z € I, it follows that

(£ o) < (Ca) |I\1nfM(f)(z)2§(C4)2 M(f)(x)2dx. (6.1.11)
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Next we observe that the rectangles s € D,,, with the property that £ € 0y(2) are all
disjoint. This implies that the corresponding time intervals I; are also disjoint. Thus,
summing (6.1.11) over all s € D,,, with & € 0y(2), we obtain that
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which establishes the required claim using the boundedness of the Hardy-Littlewood
maximal operator M on L?(R). We conclude that each A%”, initially defined on

Z(R), admits an L?>-bounded extension and all these extensions have norms uni-

formly bounded in m and &. We denote these extensions also by A’ZJ.

We now explain why Az = ¥.,czA¥ is well defined on L*(R) and we examine

its L boundedness. For every fixed & € R and each m € Z there is at most one £ € Z,
such that the upper parts of the frequency components of the dyadic tiles

s=[k2", (k+1)2") x [27" ((+1)27™),  keZ

contain &, i.e., they satisfy (¢+ 1)27" <& < (¢4 1)27"™. For a given g € L*(R) let
gm = 0 if no such ¢ exists. For those m for which ¢ exists define g, via

gm — §X[427m‘(4+%)27m)
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and notice that A%” (gm) = A’é” (g). Moreover, g, and g,; have disjoint supports if
m # m'. We use these observations to obtain
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As already observed, the supports of the Fourier transforms of AZ’(g) are pairwise

disjoint when m € Z. This implies that <A’g(g) \A?/ (g)) = 0 whenever m # m’. Con-
sequently, given € > 0 there is an Ny such that for M > N > Ny we have
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Thus the series ZmGZA%”(g) is Cauchy and it converges to an element of L?(R)
which we denote by Ag(g). Combining (6.1.12) and (6.1.13) we obtain that A¢ is

bounded from L?(R) to itself with norm at most Cs.

We now address the last assertion about the absolute pointwise convergence of
the series in (6.1.8) for all x € R when f € L'(R) and & > 0. For fixed x € R, & >0,
we pick mq € Z such that 270~1 < & < 270 We notice that for each m € Z there
is only one horizontal row of tiles of size 2™ x 27™ whose upper parts contain & and
thus appearing in the sum in (6.1.8). Moreover, for all the tiles s that appear in the
sum in (6.1.8), the size of @, cannot be bigger than 270 since the top part of w;
contains €. Thus if I, = [2"k,2™(k+ 1)), we must have m > mg. Combining these
observations with the fact that | (f | @s)| < || fll.1]|@s|lz= , we estimate the sum of the
absolute value of each term of the series in (6.1.8) by
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for some constant C > 0. Summing first over k € Z and then over m > my, we obtain
that the series in (6.1.8) converges absolutely for all x € R and is bounded above by
a constant multiple of &||f]|,.- O

6.1.2 Discretization of the Carleson Operator

Weleth € #(R), & €R, and foreachm € Z, y,n € R, and A € [0, 1] we introduce
the operators
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