where we used an earlier observation about s and s', the Cauchy–Schwarz inequality, and the fact that

$$\sum_{\substack{s' \in \mathbf{D}_m \\ \mathbf{\omega}_{s'} = \mathbf{\omega}_s}} \left| \left\langle \varphi_s \, | \, \varphi_{s'} \right\rangle \right| \le C \sum_{\substack{s' \in \mathbf{D}_m \\ \mathbf{\omega}_{s'} = \mathbf{\omega}_s}} \left(1 + \frac{\operatorname{dist} \left(I_s, I_{s'} \right)}{2^m} \right)^{-10} \le C_1 \,,$$

which follows from the result in Appendix B.1. To estimate (6.1.10), we use that

$$\begin{split} \left| \left\langle f \, | \, \varphi_{s} \right\rangle \right| &\leq C_{2} \int_{\mathbf{R}} |f(y)| \, |I_{s}|^{-\frac{1}{2}} \left(1 + \frac{|y - c(I_{s})|}{|I_{s}|} \right)^{-10} dy \\ &\leq C_{3} \, |I_{s}|^{\frac{1}{2}} \int_{\mathbf{R}} |f(y)| \left(1 + \frac{|y - z|}{|I_{s}|} \right)^{-10} \frac{dy}{|I_{s}|} \\ &\leq C_{4} \, |I_{s}|^{\frac{1}{2}} \mathcal{M}(f)(z), \end{split}$$

for all $z \in I_s$, in view of Theorem 2.1.10 in [156]. Since the preceding estimate holds for all $z \in I_s$, it follows that

$$\left|\left\langle f \,|\, \varphi_s \right\rangle\right|^2 \le (C_4)^2 |I_s| \inf_{z \in I_s} M(f)(z)^2 \le (C_4)^2 \int_{I_s} M(f)(x)^2 \, dx.$$
 (6.1.11)

Next we observe that the rectangles $s \in \mathbf{D}_m$ with the property that $\xi \in \omega_{s(2)}$ are all disjoint. This implies that the corresponding time intervals I_s are also disjoint. Thus, summing (6.1.11) over all $s \in \mathbf{D}_m$ with $\xi \in \omega_{s(2)}$, we obtain that

$$\begin{split} \sum_{s\in\mathbf{D}_m} \left| \left\langle f \,|\, \varphi_s \right\rangle \right|^2 \chi_{\omega_{s(2)}}(\xi) &\leq (C_4)^2 \sum_{s\in\mathbf{D}_m} \chi_{\omega_{s(2)}}(\xi) \int_{I_s} M(f)(x)^2 \, dx \\ &\leq (C_4)^2 \int_{\mathbf{R}} M(f)(x)^2 \, dx, \end{split}$$

which establishes the required claim using the boundedness of the Hardy–Littlewood maximal operator M on $L^2(\mathbf{R})$. We conclude that each A_{ξ}^m , initially defined on $\mathscr{S}(\mathbf{R})$, admits an L^2 -bounded extension and all these extensions have norms uniformly bounded in m and ξ . We denote these extensions also by A_{ξ}^m .

We now explain why $A_{\xi} = \sum_{m \in \mathbb{Z}} A_{\xi}^{m}$ is well defined on $L^{2}(\mathbb{R})$ and we examine its L^{2} boundedness. For every fixed $\xi \in \mathbb{R}$ and each $m \in \mathbb{Z}$ there is at most one $\ell \in \mathbb{Z}$ such that the upper parts of the frequency components of the dyadic tiles

$$s = [k2^m, (k+1)2^m) \times [\ell 2^{-m}, (\ell+1)2^{-m}), \qquad k \in \mathbb{Z}$$

contain ξ , i.e., they satisfy $(\ell + \frac{1}{2})2^{-m} \le \xi < (\ell + 1)2^{-m}$. For a given $g \in L^2(\mathbb{R})$ let $g_m = 0$ if no such ℓ exists. For those *m* for which ℓ exists define g_m via

$$\widehat{g_m} = \widehat{g} \chi_{\left[\ell 2^{-m}, \left(\ell + \frac{1}{2}\right)2^{-m}\right)}$$

420

and notice that $A_{\xi}^{m}(g_{m}) = A_{\xi}^{m}(g)$. Moreover, $\widehat{g_{m}}$ and $\widehat{g_{m'}}$ have disjoint supports if $m \neq m'$. We use these observations to obtain

$$\sum_{e \in \mathbf{Z}} \|A_{\xi}^{m}(g)\|_{L^{2}}^{2} = \sum_{m \in \mathbf{Z}} \|A_{\xi}^{m}(g_{m})\|_{L^{2}}^{2}$$

$$\leq C_{5} \sum_{m \in \mathbf{Z}} \|g_{m}\|_{L^{2}}^{2}$$

$$= C_{5} \sum_{m \in \mathbf{Z}} \|\widehat{g_{m}}\|_{L^{2}}^{2}$$

$$\leq C_{5} \|g\|_{L^{2}}^{2} < \infty.$$
(6.1.12)

As already observed, the supports of the Fourier transforms of $A_{\xi}^{m}(g)$ are pairwise disjoint when $m \in \mathbb{Z}$. This implies that $\langle A_{\xi}^{m}(g) | A_{\xi}^{m'}(g) \rangle = 0$ whenever $m \neq m'$. Consequently, given $\varepsilon > 0$ there is an N_0 such that for $M > N \ge N_0$ we have

$$\left\|\sum_{N \le |m| \le M} A_{\xi}^{m}(g)\right\|_{L^{2}}^{2} = \sum_{N \le |m| \le M} \left\|A_{\xi}^{m}(g)\right\|_{L^{2}}^{2} < \varepsilon^{2}.$$
 (6.1.13)

Thus the series $\sum_{m \in \mathbb{Z}} A_{\xi}^{m}(g)$ is Cauchy and it converges to an element of $L^{2}(\mathbb{R})$ which we denote by $A_{\xi}(g)$. Combining (6.1.12) and (6.1.13) we obtain that A_{ξ} is bounded from $L^{2}(\mathbb{R})$ to itself with norm at most C_{5} .

We now address the last assertion about the absolute pointwise convergence of the series in (6.1.8) for all $x \in \mathbf{R}$ when $f \in L^1(\mathbf{R})$ and $\xi > 0$. For fixed $x \in \mathbf{R}$, $\xi > 0$, we pick $m_0 \in \mathbf{Z}$ such that $2^{-m_0-1} \leq \xi < 2^{-m_0}$. We notice that for each $m \in \mathbf{Z}$ there is only one horizontal row of tiles of size $2^m \times 2^{-m}$ whose upper parts contain ξ and thus appearing in the sum in (6.1.8). Moreover, for all the tiles *s* that appear in the sum in (6.1.8), the size of ω_s cannot be bigger than 2^{-m_0} since the top part of ω_s contains ξ . Thus if $I_s = [2^m k, 2^m (k+1))$, we must have $m \ge m_0$. Combining these observations with the fact that $|\langle f | \varphi_s \rangle| \le ||f||_{L^1} ||\varphi_s||_{L^\infty}$, we estimate the sum of the absolute value of each term of the series in (6.1.8) by

$$C \|f\|_{L^{1}} \sum_{m \ge m_{0}} \sum_{k \in \mathbf{Z}} 2^{-\frac{m}{2}} \frac{2^{-\frac{m}{2}}}{(1+2^{-m}|x-2^{m}(k+\frac{1}{2})|)^{2}}$$
(6.1.14)

for some constant C > 0. Summing first over $k \in \mathbb{Z}$ and then over $m \ge m_0$, we obtain that the series in (6.1.8) converges absolutely for all $x \in \mathbb{R}$ and is bounded above by a constant multiple of $\xi ||f||_{L^1}$.

6.1.2 Discretization of the Carleson Operator

We let $h \in \mathscr{S}(\mathbf{R})$, $\xi \in \mathbf{R}$, and for each $m \in \mathbf{Z}$, $y, \eta \in \mathbf{R}$, and $\lambda \in [0, 1]$ we introduce the operators

$$B^{m}_{\xi,y,\eta,\lambda}(h) = \sum_{s \in \mathbf{D}_{m}} \chi_{\omega_{s(2)}}(2^{-\lambda}(\xi+\eta)) \left\langle D^{2^{\lambda}} \tau^{y} M^{\eta}(h) \,|\, \varphi_{s} \right\rangle M^{-\eta} \tau^{-y} D^{2^{-\lambda}}(\varphi_{s})$$