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it suffices to obtain L? — L>* bounds for the one-sided maximal operators

@ = sl [ Fe@mea|,
@ = s [ e

acting on a Schwartz function f (with bounds independent of f). Note that

G(f)x) < 1)+ (F) (=),

where f(x) = f(—x) is the usual reflection operator. Therefore, it suffices to obtain
bounds only for €.

For a > 0 and y € R we define the translation operator 7°, the modulation operator
M?, and the dilation operator D* as follows:

T)x) = flx—y),
D(f)(x) = a 2 f(a'x),
MY (f)(x) = f(x)ex.

These operators are isometries on L>(R).
We break down the proof of Theorem 6.1.1 into several steps.

6.1.1 Preliminaries

We denote rectangles of area 1 in the (x,&) plane by s, 7, u, etc. All rectangles
considered in the sequel have sides parallel to the axes. We think of x as the time
coordinate and of & as the frequency coordinate. For this reason we refer to the (x, &)
coordinate plane as the time—frequency plane. The projection of a rectangle s on the
time axis is denoted by I;, while its projection on the frequency axis is denoted by
@s. Thus a rectangle s is just s = I; X @;. Rectangles with sides parallel to the axes
and area equal to one are called tiles.

The center of an interval I is denoted by c¢(I). Also for a > 0, al denotes an
interval with the same center as I whose length is a|I|. Given a tile s, we denote by
s(1) its bottom half and by s(2) its upper half defined by

s(1) =1I; x (0, N (—o0,c(y))), 5(2) = I x (0, N [c(@y), +e0)) .

These sets are called semitiles. The projections of these sets on the frequency axes
are denoted by @) and @), respectively. See Figure 6.1.

A dyadic interval is an interval of the form [m2¥, (m + 1)2%), where k and m are
integers. We denote by D the set of all rectangles I x @ with I, @ dyadic intervals

and |I||w| = 1. Such rectangles are called dyadic tiles. “We-denote-by-D-theset-of
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all-dyadie-tiles: For every integer m, we denote by D,, the set of all tiles s € D such
that |I;| = 2. We call these dyadic tiles of scale m.

Fig. 6.1 The lower and the
upper parts of a tile s. 5(2)

s(1)

We fix a Schwartz function @ such that @ takes values in [0, 1] and supported in
the interval [—1/10,1/10], and equal to 1 on the interval [—9/100,9/100]. For each
tile s, we introduce a function @y as follows:

¢s(x) = |1s|_£(P(x|IC|(IS)>e2”i"(‘°s(1)>x, (6.1.4)

This function is localized in frequency near c(a)s(l)). Using the previous notation,
we have
0, = ME@s1)) zells) plis| (9).

Observe that

—c( @ .
o5(8) = |60s|%(ﬁ(‘m)eznl("(w&(l))5)"(’S> , (6.1.5)

from which it follows that @; is supported in %a)s(l). Also observe that the functions
@, have the same L?(R) norm.
Recall the complex inner product notation for f, g € L?(R):

(flg)= /R f(x)g(x)dx. (6.1.6)
Given a real number & and m € Z, we introduce an operator
A (f) = EZD‘, Xoyo) (E) (f105) 5. (6.1.7)

for functions f € .7 (R). The series in (6.1.7) converges absolutely and in L? for f in
the Schwartz class (see Exercise 6.1.9) and thus A'g is well defined on .7 (R). Note
that for a fixed m, the sum in (6.1.7) is taken over the row of dyadic rectangles of size
2™ x 27" whose tops contain the horizontal line at height &. The Fourier transforms
of the operators A are supported in a horizontal strip contained in (—o0, &] of width

%2_’”. Notice that if the characteristic function were missing in (6.1.7), then for a
suitable function @, the sum would be equal to a multiple of f(x); cf. Exercise 6.1.9.
Thus for each m € Z the operator A’g( f) may be viewed as a “piece” of the multiplier

operator f — (f)q,w_é])v. Summing over m yields a better approximation to this
half-line multiplier operator.



