we show that $\partial_j(|\xi|^z \widehat{\varphi}(\xi))(0)$ exists. Since every Taylor polynomial of $\widehat{\varphi}$ at zero is identically equal to zero, it follows from Taylor's theorem that $|\widehat{\varphi}(\xi)| \leq C_M |\xi|^M$ for every $M \in \mathbb{Z}^+$, whenever ξ lies in a compact set. Consequently, if $M > 1 - \operatorname{Re} z$,

$$\frac{|te_j|^z \widehat{\varphi}(te_j)}{t}$$

tends to zero as $t \to 0$ when e_j is the vector with 1 in the *j*th entry and zero elsewhere. This shows that all partials of $|\xi|^z \widehat{\varphi}(\xi)$ at zero exist and are equal to zero. By induction we assume that $\partial^{\gamma}(|\xi|^z \widehat{\varphi}(\xi))(0) = 0$, and we need to prove that $\partial_j \partial^{\gamma}(|\xi|^z \widehat{\varphi}(\xi))(0)$ also exists and equals zero. Applying Leibniz's rule, we express $\partial^{\gamma}(|\xi|^z \widehat{\varphi}(\xi))$ as a finite sum of derivatives of $|\xi|^z$ times derivatives of $\widehat{\varphi}(\xi)$. But for each $|\beta| \leq |\gamma|$ we have $|\partial^{\beta}(\widehat{\varphi})(\xi)| \leq C_{M,\beta}|\xi|^M$ for all $M \in \mathbb{Z}^+$ whenever $|\xi| \leq 1$. Picking $M > |\gamma| + 1 - \operatorname{Re} z$ and using the fact that $|\partial^{\gamma-\beta}(|\xi|^z)| \leq C_{\alpha}|\xi|^{\operatorname{Re} z - |\gamma| + |\beta|}$, we deduce that $\partial_j \partial^{\gamma}(|\xi|^z \widehat{\varphi}(\xi))(0)$ also exists and equals zero.

We have now proved that if φ belongs to $\mathscr{S}_0(\mathbb{R}^n)$, then so does $(|\xi|^z \widehat{\varphi}(\xi))^{\vee}$ for all $z \in \mathbb{C}$. This allows us to introduce the operation of multiplication by $|\xi|^z$ on the Fourier transforms of distributions modulo polynomials. This is described in the following definition.

Definition 1.1.4. Let $s \in \mathbf{C}$ and $u \in \mathscr{S}'(\mathbf{R}^n) / \mathscr{P}(\mathbf{R}^n)$. We define another distribution $(|\xi|^s \hat{u})^{\vee}$ in $u \in \mathscr{S}'(\mathbf{R}^n) / \mathscr{P}(\mathbf{R}^n)$ by setting for all φ in $\mathscr{S}_0(\mathbf{R}^n)$

$$\langle (|\cdot|^{s}\widehat{u})^{\vee}, \varphi \rangle = \langle u, (|\cdot|^{s}\varphi^{\vee})^{\wedge} \rangle$$

This definition is consistent with the corresponding operations on functions and makes sense since, as observed, φ in $\mathscr{S}_0(\mathbb{R}^n)$ implies that $(|\cdot|^s \widehat{\varphi})^{\vee}$ also lies in $\mathscr{S}_0(\mathbb{R}^n)$, and thus the action of *u* on this function is defined.

The next proposition allows us to deduce that an infinite sum of C^s functions is also in C^s under certain circumstances.

Proposition 1.1.5. Let $N \in \mathbb{Z}^+$. Suppose that $\{g_i\}_{i \in \mathbb{Z}}$ are functions in $\mathscr{C}^{|\alpha|}(\mathbb{R}^n)$ for all multi-indices α with $|\alpha| \leq N$ and that $\sum_{i \in \mathbb{Z}} \|\partial^{\alpha}g_i\|_{L^{\infty}} < \infty$ for all $|\alpha| \leq N$. Then the function $g = \sum_{i \in \mathbb{Z}} g_i$ is in $\mathscr{C}^{|\alpha|}(\mathbb{R}^n)$ and

$$\partial^{\alpha}g = \sum_{i \in \mathbf{Z}} \partial^{\alpha}g_i$$

for all $|\alpha| \leq N$.

Proof. Let e_j be the vector in \mathbb{R}^n with 1 in the *j*th coordinate and zero in the remaining ones. For $h \in \mathbb{R} \setminus \{0\}$ we have

$$\frac{g(x+he_j)-g(x)}{h} = \sum_{i\in\mathbb{Z}} \frac{g_i(x+he_j)-g_i(x)}{h}$$