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We now prove Lemma 5.4.8, which we had left open.

Proof. The proof is based on interpolation. For fixed `,`′ ∈ I we define the bilinear
operator

T`,`′(g,h) = (gχ
δ
` )∗ (hχ

δ

`′ ) .

As we have previously observed, it is a simple geometric fact that the support of χδ
`

is contained in a rectangle of side length ≈ δ in the direction e2πiδ 1/2` and of side
length ≈ δ

1
2 in the direction ie2πiδ 1/2`. Any two rectangles with these dimensions

in the aforementioned directions have an intersection that depends on the angle be-
tween them. Indeed, if ` 6= `′, this intersection is contained in a rhombus of side
δ/sin(2πδ

1
2 |`−`′|) and height δ , and hence the measure of the intersection is seen

easily to be at most a constant multiple of

δ · δ

sin(2πδ
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.

As for `,`′ in the index set I we have 2πδ
1
2 |`− `′|< π/4, the sine is comparable to

its argument, and we conclude that the measure of the intersection is at most
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It follows that
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Also, the estimate∥∥T`,`′(g,h)
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L1 ≤ ‖g‖L1‖h‖L1 (5.4.40)


