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show that there exist positive constants C,d (depending only on n and Rel ) such
that for all functions f in Lp(Rn) we have
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Once (5.4.15) is established, the Lp boundedness of the operator f 7! Kl ⇤ f follows
by summing the series in (5.4.14).

As a consequence of (5.4.13) we obtain that
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since y j(x) = y(2� jx) and y is supported in the annulus 1
2  |x|  2. From this

point on, we tacitly assume that the constants containing a prime grow at most ex-
ponentially in |Iml |2. Since Kl

j is supported in a ball of radius 2 j+1 and satisfies
(5.4.16), we deduce the estimate
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We need another estimate for cKl
j . We claim that for all M � n+ 1 there is a

constant CM,n,b such that
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Indeed, since cKl (x ) is supported in |x | � 1
2 [recall that the function h was chosen

equal to 1 on B(0, 1
2 )], we have
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from which it follows easily that

sup
|x | 1

8

|cKl
j (x )|C0

M2� j(M�n) . (5.4.19)

Then (5.4.18) is a consequence of (5.4.19) and of the fact that the function |x |�b is
integrable near the origin.

We now return to estimate (5.4.15). A localization argument (Exercise 5.4.4)
allows us to reduce estimate (5.4.15) to functions f that are supported in a cube of


