5.4 Fourier Transform Restriction and Bochner-Riesz Means

where

$$\beta = 1 - (n-1)(\frac{1}{p} - \frac{1}{2})$$

and I_{β} is the Riesz potential (or fractional integral) given in Definition 1.2.1. Using Theorem 1.2.3 with $s = \beta$, n = 1, and q = p', we obtain that the last displayed equation is bounded by a constant multiple of

$$\left\|\left\|f(\cdot,t)\right\|_{L^{p}(\mathbf{R}^{n-1})}\right\|_{L^{p}(\mathbf{R},dt)}=\left\|f\right\|_{L^{p}(\mathbf{R}^{n})}.$$

The condition $\frac{1}{p} - \frac{1}{q} = \frac{s}{n}$ on the indices p, q, s, n assumed in Theorem 1.2.3 translates exactly to

$$\frac{1}{p} - \frac{1}{p'} = \frac{\beta}{1} = 1 - \frac{n-1}{p} + \frac{n-1}{2},$$

which is equivalent to $p = \frac{2(n+1)}{n+3}$. This concludes the proof of estimate (5.4.7) in which the measure σ^{\vee} is replaced by $(\varphi_j d\sigma)^{\vee}$. Estimates for the remaining $(\varphi_j d\sigma)^{\vee}$ follow by a similar argument in which the role of the last coordinate is played by some other coordinate. The final estimate (5.4.7) follows by summing *j* over the finite set *F*. The proof of the theorem is now complete.

5.4.3 Applications to Bochner–Riesz Multipliers

We now apply the restriction theorem obtained in the previous subsection to the Bochner–Riesz problem. In this subsection we prove the following result.

Theorem 5.4.6. For $\operatorname{Re} \lambda > \frac{n-1}{2(n+1)}$, the Bochner–Riesz operator B^{λ} is bounded on $L^{p}(\mathbf{R}^{n})$ for p in the optimal range

$$\frac{2n}{n+1+2\operatorname{Re}\lambda}$$

Proof. The proof is based on the following two estimates:

$$\begin{aligned} \left\| B^{\lambda} \right\|_{L^{1}(\mathbf{R}^{n}) \to L^{1}(\mathbf{R}^{n})} &\leq C_{1}(\operatorname{Re} \lambda) \ e^{c_{0}|\operatorname{Im} \lambda|^{2}} \qquad \text{when } \operatorname{Re} \lambda > \frac{n-1}{2}, \quad (5.4.11) \\ \left\| B^{\lambda} \right\|_{L^{p}(\mathbf{R}^{n}) \to L^{p}(\mathbf{R}^{n})} &\leq C_{2}(\operatorname{Re} \lambda) \ e^{c_{0}|\operatorname{Im} \lambda|^{2}} \qquad \text{when } \operatorname{Re} \lambda > \frac{n-1}{2(n+1)}, \quad (5.4.12) \end{aligned}$$

where $p = \frac{2(n+1)}{n+3}$ and C_1 , C_2 are constants that depend on *n* and $\operatorname{Re}\lambda$, while c_0 is an absolute constant. Once (5.4.11) and (5.4.12) are known, the required conclusion is a consequence of Theorem 1.3.7 in [156]. Recall that B^{λ} is given by convolution with the kernel K_{λ} defined in (5.2.1). This kernel satisfies

$$|K_{\lambda}(x)| \le C_3(\operatorname{Re}\lambda) e^{c_0 |\operatorname{Im}\lambda|^2} (1+|x|)^{-\frac{n+1}{2}-\operatorname{Re}\lambda}$$
(5.4.13)