
36 1 Smoothness and Function Spaces

We now define the homogeneous Lipschitz spaces.

Definition 1.4.3. For γ > 0 we define

∥∥ f
∥∥ .

Λγ
= sup

x∈Rn
sup

h∈Rn\{0}

|D[γ]+1
h ( f )(x)|
|h|γ

and we let
.

Λγ be the space of all continuous functions f on Rn that satisfy
‖ f‖ .

Λγ
< ∞. We call

.
Λγ the homogeneous Lipschitz space of order γ .

We verify that elements of
.

Λγ have at most polynomial growth at infinity. Indeed,
identity (1.4.2) implies for all h ∈ Rn

Dk+1
h ( f − f (0))(0) =

k+1

∑
s=1

(−1)k+1−s
(

k+1
s

)
( f (sh)− f (0))

and thus

| f ((k+1)h)− f (0)| ≤
k

∑
s=1

(
k+1

s

)
| f (sh)− f (0)|+‖ f‖ .

Λγ
|h|k+1

≤ 2k+1[ sup
s∈{1,...,k}

| f (sh)− f (0)|+‖ f‖ .
Λγ
|h|k+1] .

Replacing h by (k+1)h, we obtain for all h ∈ Rn

| f ((k+1)2h)− f (0)| ≤ 2k+1[ sup
s∈{1,...,k}

| f (s(k+1)h)− f (0)|+‖ f‖ .
Λγ
|(k+1)h|k+1]

≤ 2k+1[2k+1 sup
s,s′∈{1,...,k}

| f (ss′h)− f (0)|+‖ f‖ .
Λγ
|(k+1)h|k+1]

≤ (2k+1)2[ sup
s∈{1,...,k2}

| f (sh)− f (0)|+‖ f‖ .
Λγ
|(k+1)h|k+1] ,

and thus continuing in this way for all M ∈ Z+ and h ∈ Rn we deduce

| f ((k+1)Mh)− f (0)| ≤ (2k+1)M[ sup
s∈{1,...,kM}

| f (sh)− f (0)|+‖ f‖ .
Λγ
|(k+1)M−1h|k+1].

It follows from this that

| f (h)− f (0)| ≤ (2k+1)M
[

sup
s∈{1,...,kM}

| f (s(k+1)−Mh)− f (0)|+‖ f‖ .
Λγ

|h|k+1

(k+1)(k+1)

]
.

Given |h| > 1, there is an M ∈ Z+ such that ( k+1
k )M−1 < |h| ≤ ( k+1

k )M . Then, if
c(k) = (k+1)/ log2(

k+1
k ), we have

(2k+1)M = ( k+1
k )Mc(k) ≤ ( k+1

k )c(k)|h|c(k) .
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But f is continuous, so ‖ f‖L∞(B(0,1)) < ∞, and consequently for all |h|> 1 we obtain

| f (h)− f (0)| ≤ ( k+1
k )c(k)[2‖ f‖L∞(B(0,1))+‖ f‖ .

Λγ

]
|h|c(k) .

We conclude that functions in
.

Λγ have at most polynomial growth at infinity and
they can be thought of as elements of S ′(Rn).

Since elements of
.

Λγ can be viewed as tempered distributions, we extend the
definition of Dk

h(u) to tempered distributions. For u ∈ S ′(Rn) we define another
tempered distribution Dk

h(u) via the identity〈
Dk

h(u),ϕ
〉
=
〈
u,Dk

−h(ϕ)
〉

for all ϕ in the Schwartz class.
Constant functions f satisfy Dh( f )(x) = 0 for all h,x ∈ Rn, and therefore the

quantity ‖ · ‖ .
Λγ

is insensitive to constants. Similarly, the expressions D[γ]+1
h ( f ) and

‖ f‖ .
Λγ

do not recognize polynomials of degree up to [γ]. Moreover, polynomials are
the only continuous functions with this property; see Exercise 1.4.1. This means
that the quantity ‖ · ‖ .

Λγ
is not a norm but only a seminorm. It can be made a norm

if we consider equivalent classes of functions modulo polynomials. For this reason
we often view

.
Λγ as a subspace of S ′(Rn)/P[γ](Rn), where Pd is the space of

polynomials of degree at most d for d ≥ 0.

Examples 1.4.4. Let a ∈ Rn, and let 0 < γ < 1. Then the function h(x) = cos(x ·a)
lies in Λγ(Rn) since |h(x)−h(y)| ≤min(2, |a| |x− y|), and thus

|h(x)−h(y)| ≤ 21−γ |a|γ |x− y|γ .

Also, the function x 7→ |x|γ lies in
.

Λ γ(Rn) since ||x+h|γ−|x|γ | ≤ |h|γ for 0 < γ < 1.
Interesting examples of functions in Lipschitz spaces of higher order arise by the

powers of the absolute value. Consider, for instance, the function |x|2 on Rn: we
have Dh(|x|2) = 2|h|2, and thus |x|2 ∈

.
Λγ(Rn) if and only if γ ≥ 2.

Another example is given by the function |x|3/2 on Rn which has continuous
partial derivatives at any point: ∂ j|x|3/2 = 3

2 x j|x|−1/2, j = 1, . . . ,n, on Rn (with a
value of 0 at the origin), while (|x|3/2)′ = 3

2 |x|1/2sgnx when n = 1. We claim that
the function |x|3/2 lies in

.
Λ 3/2(Rn) and that the functions x j|x|−1/2 lie in

.
Λ 1/2(Rn).

To verify these assertions, we first prove the inequality∣∣∣∣ x j +h j

|x+h| 12
− x j

|x| 12

∣∣∣∣≤C |h| 12 (1.4.3)

by considering the following three cases: (a) x = 0 and h 6= 0, which is trivial; (b)
x 6= 0 and 2|h| < |x|, in which case both functions are smooth and the mean value
theorem yields a bound of the form c |h| |x + ξ |−1/2 for some |ξ | ≤ |h|, proving
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(1.4.3), since |x+ξ | ≥ |x|− |ξ | ≥ |x|− |h| ≥ |h|; and (c) 2|h| ≥ |x| and h 6=−x 6= 0,
in which case the left-hand side of (1.4.3) is bounded by

|x+h|1/2 + |x|1/2 ≤C|h|1/2.

Now for some ξ ∈ Rn, with |ξ | ≤ |h|, we have2

D2
h(|x|3/2) = ∇(|x|3/2)(x+h+ξ ) ·h−∇(|x|3/2)(x+ξ ) ·h

and applying (1.4.3) we deduce that

|D2
h(|x|3/2)| ≤C |h|3/2.

We will make use of the following properties of the difference operators Dk
h.

Proposition 1.4.5. Let f be a C m function on Rn for some m ∈ Z+. Then for all
h = (h1, . . . ,hn) and x ∈ Rn the following identity holds:

Dh( f )(x) =
∫ 1

0

n

∑
j=1

h j (∂ j f )(x+ sh)ds . (1.4.4)

More generally, we have that

Dm
h ( f )(x) =∫ 1

0
· · ·
∫ 1

0

n

∑
j1=1
· · ·

n

∑
jm=1

h j1 · · ·h jm(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)ds1 · · ·dsm.
(1.4.5)

Consequently, if, for some γ ∈ (0,1), ∂ α f lies in
.

Λγ for all multi-indices |α| = m,
then f lies in

.
Λm+γ .

Proof. Identity (1.4.4) is a consequence of the fundamental theorem of calculus
applied to the function t 7→ f ((1− t)x+ t(x+h)) on [0,1], whereas identity (1.4.5)
follows from (1.4.4) by induction.

Now suppose that ∂ α f lie in
.

Λγ for all multi-indices |α|= m. Apply Dh on both
sides of (1.4.5); using that

|Dh(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)| ≤
∥∥∂ j1 · · ·∂ jm f

∥∥ .
Λγ
|h|γ

we obtain

|Dm+1
h ( f )(x)| ≤ |h|m+γ

n

∑
j1=1
· · ·

n

∑
jm=1

∥∥∂ j1 · · ·∂ jm f
∥∥ .

Λγ
,

which proves that f lies in
.

Λm+γ . �

2 We used that g(b)− g(a) =
∫ 1

0 ∇g
(
(1− t)a+ tb

)
· (b− a)dt = ∇g

(
(1− t∗)a+ t∗b

)
· (b− a) for

all a,b ∈ Rn, for a C 1 function g on Rn and some t∗ ∈ (0,1), depending on g,a,b.
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1.4.2 Littlewood–Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood–Paley
operators ∆ j. As in the previous section, we fix a radial Schwartz function Ψ whose
Fourier transform is nonnegative, is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is
equal to one on the annulus 1≤ |ξ | ≤ 2− 2

7 , and satisfies

∑
j∈Z

Ψ̂(2− j
ξ ) = 1 (1.4.6)

for all ξ 6= 0. The Littlewood–Paley operators ∆Ψ
j associated with Ψ are given by

multiplication on the Fourier transform side by the smooth bump Ψ̂(2− jξ ). Since
a given f in

.
Λγ has polynomial growth at infinity, it is a tempered distribution, and

thus the convolution Ψ2− j ∗ f = ∆Ψ
j ( f ) is a well-defined smooth function of at most

polynomial growth at infinity (cf. Theorem 2.3.20 in [156]). In the sequel we set
[[γ]] = [γ] if γ /∈ Z+ and [[γ]] = γ−1 if γ ∈ Z+ and we also set C 0 = C .

Theorem 1.4.6. Let Ψ , ∆Ψ
j be as above and γ > 0. Then there is a constant C =

C(n,γ,Ψ) such that for all f in
.

Λγ we have the estimate

sup
j∈Z

2 jγ∥∥∆
Ψ
j ( f )

∥∥
L∞ ≤C

∥∥ f
∥∥ .

Λγ
. (1.4.7)

Conversely, given f in S ′(Rn) satisfying

sup
j∈Z

2 jγ∥∥∆
Ψ
j ( f )

∥∥
L∞ =C0 < ∞ , (1.4.8)

there is a polynomial Q such that | f (x)−Q(x)| ≤Cn,γ C0(1+ |x|)[γ]+1 for all x ∈Rn

and some constant Cn,γ . Moreover, f −Q lies in C [[γ]](Rn)∩
.

Λγ(Rn) and satisfies∥∥ f −Q
∥∥ .

Λγ
≤C′(n,γ,Ψ)C0 (1.4.9)

for some constant C′(n,γ,Ψ). In particular, functions in
.

Λγ(Rn) are in C [[γ]](Rn).

Proof. We begin with the proof of (1.4.7). We first consider the case 0 < γ < 1,
which is very simple. Since each ∆Ψ

j is given by convolution with a function with
mean value zero, for a function f ∈

.
Λγ and every x ∈ Rn we write

∆
Ψ
j ( f )(x) =

∫
Rn

f (x− y)Ψ2− j(y)dy

=
∫

Rn
( f (x− y)− f (x))Ψ2− j(y)dy

= 2− jγ
∫

Rn

D−y( f )(x)
|y|γ |2 jy|γ 2 jn

Ψ(2 jy)dy ,


