36 1 Smoothness and Function Spaces
We now define the homogeneous Lipschitz spaces.
Definition 1.4.3. For v > 0 we define
1
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and we let /\Y be the space of all continuous functions f on R” that satisfy
£l 5, < oo We call Ay the homogeneous Lipschitz space of order 7.
Y

We verify that elements of /\Y have at most polynomial growth at infinity. Indeed,
identity (1.4.2) implies for all # € R”
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Replacing i by (k+ 1)h, we obtain for all 2 € R"
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and thus continuing in this way for all M € Z* and h € R" we deduce
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It follows from this that
| h‘k+l
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Given |h| > 1, there is an M € Z™ such that (HTI)M—l < |n < (HTI)M Then, if
c(k) = (k+ 1)/10g2(%), we have
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But f is continuous, so || f|| (B0.1)) < and consequently for all || > 1 we obtain
[£() = FO < ) O [20 Al ooy + 115, ] 1BV

We conclude that functions in /\Y have at most polynomial growth at infinity and
they can be thought of as elements of .’ (R").

Since elements of /\,, can be viewed as tempered distributions, we extend the
definition of D% (u) to tempered distributions. For u € .#/(R") we define another
tempered distribution D% (u) via the identity

<Dl;t(u)v(p> = <M7Dlih((p)>

for all ¢ in the Schwartz class.
Constant functions f satisfy Dj,(f)(x) = 0 for all 4,x € R", and therefore the

quantity [ - || ; is insensitive to constants. Similarly, the expressions DLY]H (f) and
171 Ay do not recognize polynomials of degree up to [y]. Moreover, polynomials are
the only continuous functions with this property; see Exercise 1.4.1. This means
that the quantity || - || A, is not a norm but only a seminorm. It can be made a norm
if we consider equivalent classes of functions modulo polynomials. For this reason

we often view Ay as a subspace of .#/(R")/ % (R"), where &, is the space of
polynomials of degree at most d for d > 0.

Examples 1.4.4. Let a € R", and let 0 < ¥ < 1. Then the function i(x) = cos(x - a)
lies in Ay(R") since |h(x) —h(y)| < min(2,|a||x—y|), and thus

[A(x) = h(y)| <2'|a|" |x—y[".

Also, the function x + |x|? lies in A (R") since ||x+h|Y — |x|7| < |n|Y for 0 < y < 1.

Interesting examples of functions in Lipschitz spaces of higher order arise by the
powers of the absolute value. Consider, for instance, the function \x\z on R": we
have Dj,(|x|?) = 2|h|?, and thus |x|* € Ay(Rn) if and only if y > 2.

Another example is given by the function \x|3/ 2 on R” which has continuous
partial derivatives at any point: d;|x|/? = %xj\x\_l/z, j=1,...,n, on R" (with a
value of 0 at the origin), while (|x[*/2)' = %|x|1/2sgnx when n = 1. We claim that
the function [x[*/2 lies in A »(R") and that the functions x;|x| ~!/2 lie in A 1 ;> (R").
To verify these assertions, we first prove the inequality
Xj+ /’lj Xj

1 . <ClhJz (1.4.3)
lx+hlz  |x]2

by considering the following three cases: (a) x = 0 and & # 0, which is trivial; (b)
x # 0 and 2|A| < |x|, in which case both functions are smooth and the mean value
theorem yields a bound of the form c|h||x + &|~'/2 for some |&| < |h|, proving
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(1.4.3), since |x+ &[ > |x| — [E] = |x| — || = |h[; and (¢) 2|h| = |x| and h # —x # O,
in which case the left-hand side of (1.4.3) is bounded by

e+ h|V2 4 x| 1/2 < |2

Now for some & € R”, with || < ||, we have?

D}(I¥2) = V() (x &) -h = V(P2 (x4 &) -
and applying (1.4.3) we deduce that
DG ()] < C|mf2.
We will make use of the following properties of the difference operators D’,‘l.

Proposition 1.4.5. Let f be a €™ function on R" for some m € Z*. Then for all
h=(hi,...,h,) and x € R" the following identity holds:

1 n
Dh(f)(x):/o Y. h; (9f) (x+ sh) ds. (1.4.4)
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More generally, we have that
D} (f)(x) =
1 L ! (1.4.5)
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Consequently, if, for some y € (0,1), d%f lies in Ayfor all multi-indices |a| = m,
then f lies in Am+y.

Proof. Identity (1.4.4) is a consequence of the fundamental theorem of calculus
applied to the function 7 — f((1 —#)x+¢(x+h)) on [0, 1], whereas identity (1.4.5)
follows from (1.4.4) by induction.

Now suppose that 9% lie in Ay for all multi-indices |ot| = m. Apply Dj, on both
sides of (1.4.5); using that

1D (9j, 95, /) (x+ (s14+~+sm)h)| < ||3j1“'9jmf||/iy\h|y

we obtain
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which proves that f lies in Am+y. (|

2 We used that g(b) — g(a) = fy Ve((1—t)a+1b) - (b—a)dt = Vg((1 —t*)a+1*b) - (b—a) for
all a,b € R", for a %! function g on R” and some * € (0, 1), depending on g, a, b.
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1.4.2 Littlewood—Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood—Paley
operators A;. As in the previous section, we fix a radial Schwartz function ¥ whose
Fourier transform is nonnegative, is supported in the annulus 1 — % <& <2,is
equal to one on the annulus 1 < |&| <2 — %, and satisfies

Y ¥ e =1 (1.4.6)

jez

for all £ # 0. The Littlewood-Paley operators A;?p associated with ¥ are given by

multiplication on the Fourier transform side by the smooth bump 'fA’(Z_j £). Since
a given f in /\Y has polynomial growth at infinity, it is a tempered distribution, and
thus the convolution ¥;-; * f = A}P (f) is a well-defined smooth function of at most
polynomial growth at infinity (cf. Theorem 2.3.20 in [156]). In the sequel we set
Y] =1[y]ify¢Z" and [[y]] = y— 1 if y € Z* and we also set 6 = €.

Theorem 1.4.6. Let ¥, A}-P be as above and y > 0. Then there is a constant C =
C(n,v,¥) such that for all f in /\7 we have the estimate

sup2”7||Af ()] - = €13, (1.4.7)
Jjez

Conversely, given f in .’ (R") satisfying
sup2/?||AY (f)]|,» = Co < oo, (1.4.8)
jez
there is a polynomial Q such that | f(x) — Q(x)| < CnyCo(1+ |x|)M*! for all x € R
and some constant Cy, 5. Moreover, f — Q lies in €7 (R") N Ay(R") and satisfies
lF =2l <Cnr¥)G (1.4.9)
for some constant C'(n,y,P). In particular, functions in Ay(R") are in ¢/"I(R").

Proof. We begin with the proof of (1.4.7). We first consider the case 0 < y < 1,
which is very simple. Since each A;P is given by convolution with a function with

mean value zero, for a function f € /\Y and every x € R" we write
AT (@) = | f=3) ¥ ()dy
= [ =) = ) B )y
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