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where the last equality is just Plancherel’s identity on Iy = [—%, %] In view of the

last identity, it suffices to analyze the operator given by convolution with the family
of kernels k;. By the Poisson summation formula (Theorem 3.2.8 in [156]) applied
to the function x — y/(x)e?™™, we obtain
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Taking inverse Fourier transforms, we obtain
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where &, denotes Dirac mass at the point b. Therefore, k; is a sum of Dirac masses
with rapidly decaying coefficients. Since each Dirac mass has Berel-norm-at-mest
total variation equal to 1, we conclude that for some constant C we have
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where cg is independent of 7. This says that the measures k; have uniformly bounded
norms. Take now f € LP(R) and p > 2. Using identity (5.2.24), we obtain
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and the last inequality follows from Exercise 5.6.1(a) in [156]. The constant c,
depends only on p. Recalling identity (5.2.25), we write
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