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We define a rectangle R; inside the angle ZA;C;B; as in Figure 5.5. The rectangle
R; is defined so that one of its vertices is either A; or B; and the length of its longest
side is 3log(k+2).

We now make some calculations. Similar triangles show that the distance from
Cp to Cyr_y is hy — 1. As a consequence we obtain that the longest possible length
that either A ;C; or B;C; can achieve is V5hy, /2. By symmetry we may assume that
the length of A;C; is larger than that of B;C; as in Figure 5.5. We now have that

?hk< §(1+1+~~+¥)

3
— (141 1 I 2
5 5 o < Z(1+log(k+1)) < 3log(k+2),

2

since k > 1 and e < 3. Hence R/, contains the triangle A;B;C;. We also have that
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Using these two facts, we obtain
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IR;NE| > Area(A;B;C;) = ET"hk > 27" og(k+2). (5.1.2)
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Fig. 5.6 The rectangles R;.
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Denote by |XY | the length of the line segment through the points X and Y. The
law of sines applied to the triangle A;B;D; gives
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But the law of cosines applied to the triangle A;B;C;, combined with the facts
I < |A;C;],|BiCj| < V/Shi/2, and by > log(k+2) > 2% for k > 1, yields that
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Combining this estimate with (5.1.3) we obtain
A;Dj| <274 =21A;B)].

Using this fact and (5.1.2), we deduce
/ —k—1 | 1
IR;NE|>2 log(k+2) = 52 3log(k+2) > E\Rﬂ,

which proves the required conclusion (4).

Conclusion (1) in Lemma 5.1.1 follows from the fact that the regions inside the
angles ZA ;C;B; and under the triangles A ;C;B; are pairwise disjoint. This is shown
in Figure 5.6. This can be proved rigorously by a careful examination of the con-
struction of the sprouted triangles A ;C;B;, but the details are omitted.

It remains to prove (3). To achieve this we first estimate the length of the line
segment A ;D from below. The law of sines gives
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from which we obtain that
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It follows that each R; has area at least 2%~ !3log(k +2). Therefore,
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since |E| < 3/2 and k was chosen so that k +2 > ¢!/9. O

Next we have a calculation involving the Fourier transforms of characteristic
functions of rectangles.

Proposition 5.1.2. Let R be a rectangle whose center is the origin in R? and let v
be a unit vector parallel to its longest side. Consider the half-plane

H ={xcR*: x-v>0}



