Exercises

1.3.1. Let $1 and <math>s \in \mathbf{R}$. Show that the spaces \dot{L}_s^p and L_s^p are complete and that the latter decrease as *s* increases.

1.3.2. Let $1 and <math>s \in \mathbb{Z}^+$.

(a) Suppose that $f \in L_s^p(\mathbf{R}^n)$ and that φ is in $\mathscr{S}(\mathbf{R}^n)$. Prove that φf is also an element of $L_s^p(\mathbf{R}^n)$.

(b) Let v be a function whose Fourier transform is a bounded compactly supported function. Prove that if f is in $L_s^2(\mathbf{R}^n)$, then so is vf.

1.3.3. Fix s > 0 and let α be a multi-index. Let δ_0 be the Dirac mass at the origin on \mathbb{R}^n .

(a) If 0 < s - |α| < n, show that ∂^αδ₀ ∈ L^p_{-s} whenever 1
(b) If n ≤ s - |α|, prove that ∂^αδ₀ ∈ L^p_{-s} for all p ∈ (1,∞).
[*Hint:* Use Proposition 1.2.5.]

1.3.4. Let *I* be the identity operator, \mathcal{I}_1 the Riesz potential of order 1, and R_j the usual Riesz transform. Prove that

$$I = \sum_{j=1}^n \mathcal{I}_1 R_j \partial_j,$$

and use this identity to obtain Theorem 1.3.5(a) when s = 1. [*Hint:* Take the Fourier transform.]

1.3.5. Let f be in L_s^p for some $1 . Prove that <math>\partial^{\alpha} f$ is in $L_{s-|\alpha|}^p$.

1.3.6. Prove that for all \mathscr{C}^1 functions f that are supported in a ball B we have

$$|f(x)| \le \frac{1}{\omega_{n-1}} \int_{B} |\nabla f(y)| |x-y|^{-n+1} dy$$

where $\omega_{n-1} = |\mathbf{S}^{n-1}|$. For such functions obtain the local Sobolev inequality

$$||f||_{L^{q}(B)} \leq C_{q,r,n} ||\nabla f||_{L^{p}(B)},$$

where 1 and <math>1/p = 1/q + 1/n. [*Hint:* Start from $f(x) = \int_0^\infty \nabla f(x - t\theta) \cdot \theta \, dt$ and integrate over $\theta \in \mathbf{S}^{n-1}$.]

1.3.7. Show that there is a constant C such that for all \mathscr{C}^1 functions f that are supported in a ball B we have

$$\frac{1}{|B'|} \int_{B'} |f(x) - f(z)| \, dz \le C \int_{B} |\nabla f(y)| |x - y|^{-n+1} \, dy$$

for all B' balls contained in B and all $x \in B'$. [*Hint:* Start with $f(z) - f(x) = \int_0^1 \nabla f(x+t(z-x)) \cdot (z-x) dt$.]

32