1.3 Sobolev Spaces

and that the function $|\xi|^s (1 - \widehat{\Phi}(\xi))(1 + |\xi|^2)^{-\frac{s}{2}}$ is in $\mathcal{M}_p(\mathbb{R}^n)$ by Theorem 6.2.7 in [156]. It follows that

$$|f_{\infty}||_{L^p} \leq C ||f_s||_{L^p} = C ||f||_{L^p_s},$$

which, combined with (1.3.19), yields

$$\left\| \left(\sum_{j=2}^{\infty} |2^{js} \Delta_j^{\Psi}(f)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| f \right\|_{L^p_s}.$$
(1.3.20)

Finally, we have

$$2^{s} \Delta_{1}^{\Psi}(f) = 2^{s} \left(\widehat{\Psi}(\frac{1}{2}\xi)(1+|\xi|^{2})^{-\frac{s}{2}} \widehat{f}_{s}\right)^{\vee},$$

and since the function $\widehat{\Psi}(\frac{1}{2}\xi)(1+|\xi|^2)^{-\frac{s}{2}}$ being smooth with compact support lies in $\mathscr{M}_p(\mathbb{R}^n)$, it follows that

$$\left\|2^{s} \Delta_{1}^{\Psi}(f)\right\|_{L^{p}} \leq C \left\|f_{s}\right\|_{L^{p}} = C \left\|f\right\|_{L^{p}_{s}}.$$
(1.3.21)

Combining estimates (1.3.17), (1.3.20), and (1.3.21), we conclude the proof of (1.3.11). $\hfill \Box$

1.3.3 Littlewood–Paley Characterization of Homogeneous Sobolev Spaces

We now introduce the homogeneous Sobolev spaces \dot{L}_s^p . The main difference with the inhomogeneous spaces L_s^p is that elements of \dot{L}_s^p may not themselves be elements of L^p . Another point of differentiation is that elements of homogeneous Sobolev spaces whose differences are polynomials are identified.

For the purposes of the following definition, for $1 we define <math>\dot{L}^p(\mathbf{R}^n)$ as the space of all elements in $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$ such that every equivalence class [formed from the relationship $u \equiv v$ if $u - v \in \mathscr{P}(\mathbf{R}^n)$] contains a unique representative that belongs to $L^p(\mathbf{R}^n)$. One defines the $\dot{L}^p(\mathbf{R}^n)$ norm of every element of the equivalence class to be the L^p norm of the unique L^p representative. Under this definition we have

$$|f+P||_{\dot{L}^p} = ||f||_{\dot{L}^p} = ||f||_{L^p}$$

whenever $f \in L^p$ and P is a polynomial.

Definition 1.3.7. Let *s* be a real number, and let 1 . The*homogeneous* $Sobolev space <math>\dot{L}_{s}^{p}(\mathbf{R}^{n})$ is defined as the space of all *u* in $\mathscr{S}'(\mathbf{R}^{n})/\mathscr{P}(\mathbf{R}^{n})$ for which the well-defined distribution

 $(|\xi|^s \widehat{u})^{\vee}$

1 Smoothness and Function Spaces

coincides with a function in $\dot{L}^p(\mathbf{R}^n)$. For distributions u in $\dot{L}^p_s(\mathbf{R}^n)$ we define

$$\|u\|_{\dot{L}^{p}_{s}} = \|(|\cdot|^{s}\widehat{u})^{\vee}\|_{\dot{L}^{p}(\mathbf{R}^{n})}.$$
(1.3.22)

As noted earlier, to avoid working with equivalence classes of functions, we identify two distributions in $\dot{L}_{s}^{p}(\mathbf{R}^{n})$ whose difference is a polynomial. Under this identification, the quantity in (1.3.22) is a norm.

Theorem 1.3.6 also has a homogeneous version.

Theorem 1.3.8. Let Ψ satisfy (1.3.6), and let Δ_j^{Ψ} be the Littlewood–Paley operator associated with Ψ . Let $s \in \mathbf{R}$ and $1 . Then there exists a constant <math>C_1$ that depends only on n, s, p, and Ψ such that for all $f \in \dot{L}_s^p(\mathbf{R}^n)$ we have

$$\left\| \left(\sum_{j \in \mathbf{Z}} (2^{j_s} |\Delta_j^{\Psi}(f)|)^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C_1 \left\| f \right\|_{\dot{L}^p_s}.$$
 (1.3.23)

Conversely, there exists a constant C_2 that depends on the parameters n, s, p, and Ψ such that every element f of $\mathscr{S}'(\mathbb{R}^n)/\mathscr{P}(\mathbb{R}^n)$ that satisfies

$$\left\|\left(\sum_{j\in \mathbf{Z}} (2^{js}|\Delta_j^{\Psi}(f)|)^2\right)^{\frac{1}{2}}\right\|_{L^p} < \infty$$

lies in the homogeneous Sobolev space \dot{L}_s^p and we have

$$\|f\|_{\dot{L}^{p}_{s}} \leq C_{2} \left\| \left(\sum_{j \in \mathbf{Z}} (2^{js} |\Delta_{j}^{\Psi}(f)|)^{2} \right)^{\frac{1}{2}} \right\|_{L^{p}}.$$
 (1.3.24)

Proof. The proof of the theorem is similar to but a bit simpler than that of Theorem 1.3.6. To obtain (1.3.23), we start with $f \in \dot{L}_s^p$ and note that

$$2^{js}\Delta_j^{\Psi}(f) = 2^{js} \left(|\xi|^s |\xi|^{-s} \widehat{\Psi}(2^{-j}\xi) \widehat{f} \right)^{\vee} = \left(\widehat{\sigma}(2^{-j}\xi) \widehat{f}_s \right)^{\vee} = \Delta_j^{\sigma}(f_s),$$

where $\widehat{\sigma}(\xi) = \widehat{\Psi}(\xi) |\xi|^{-s}$ and Δ_j^{σ} is the Littlewood–Paley operator given on the Fourier transform side by multiplication with the function $\widehat{\sigma}(2^{-j}\xi)$. We have

$$\left\| \left(\sum_{j \in \mathbf{Z}} |2^{js} \Delta_j^{\Psi}(f)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} = \left\| \left(\sum_{j \in \mathbf{Z}} |\Delta_j^{\sigma}(f_s)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| f_s \right\|_{\dot{L}^p} = C \left\| f \right\|_{\dot{L}^p},$$

where the last inequality follows from Theorem 6.1.2 in [156]. This proves (1.3.23).

Next we show that if the expression on the right-hand side in (1.3.24) is finite, then the distribution f in $\mathscr{S}'(\mathbf{R}^n)/\mathscr{P}(\mathbf{R}^n)$ must lie in the homogeneous Sobolev space \dot{L}_s^p with norm controlled by a multiple of this expression.

30