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and that the function |ξ |s(1− Φ̂(ξ ))(1+ |ξ |2)− s
2 is in Mp(Rn) by Theorem 6.2.7

in [156]. It follows that ∥∥ f∞
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Finally, we have
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Combining estimates (1.3.17), (1.3.20), and (1.3.21), we conclude the proof of
(1.3.11). �

1.3.3 Littlewood–Paley Characterization of Homogeneous
Sobolev Spaces

We now introduce the homogeneous Sobolev spaces
.
Lp

s . The main difference with
the inhomogeneous spaces Lp

s is that elements of
.
Lp

s may not themselves be elements
of Lp. Another point of differentiation is that elements of homogeneous Sobolev
spaces whose differences are polynomials are identified.

For the purposes of the following definition, for 1 < p < ∞ we define
.
Lp(Rn)

as the space of all elements in S ′(Rn)/P(Rn) such that every equivalence class[
formed from the relationship u ≡ v if u− v ∈P(Rn)

]
contains a unique repre-

sentative that belongs to Lp(Rn). One defines the
.
Lp(Rn) norm of every element of

the equivalence class to be the Lp norm of the unique Lp representative. Under this
definition we have ∥∥ f +P
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whenever f ∈ Lp and P is a polynomial.

Definition 1.3.7. Let s be a real number, and let 1 < p < ∞. The homogeneous
Sobolev space

.
Lp

s (Rn) is defined as the space of all u in S ′(Rn)/P(Rn) for which
the well-defined distribution
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coincides with a function in
.
Lp(Rn). For distributions u in
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As noted earlier, to avoid working with equivalence classes of functions, we identify
two distributions in

.
Lp

s (Rn) whose difference is a polynomial. Under this identifica-
tion, the quantity in (1.3.22) is a norm.

Theorem 1.3.6 also has a homogeneous version.

Theorem 1.3.8. Let Ψ satisfy (1.3.6), and let ∆Ψ
j be the Littlewood–Paley operator

associated with Ψ . Let s ∈ R and 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, and Ψ such that for all f ∈ .
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Conversely, there exists a constant C2 that depends on the parameters n,s, p, and Ψ

such that every element f of S ′(Rn)/P(Rn) that satisfies∥∥∥(∑
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Proof. The proof of the theorem is similar to but a bit simpler than that of Theorem
1.3.6. To obtain (1.3.23), we start with f ∈

.
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s and note that
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j is the Littlewood–Paley operator given on the

Fourier transform side by multiplication with the function σ̂(2− jξ ). We have∥∥∥(∑
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where the last inequality follows from Theorem 6.1.2 in [156]. This proves (1.3.23).
Next we show that if the expression on the right-hand side in (1.3.24) is finite,

then the distribution f in S ′(Rn)/P(Rn) must lie in the homogeneous Sobolev
space

.
Lp

s with norm controlled by a multiple of this expression.


