One situation in which this operator appears is the following: If Γ is a closed simple curve (i.e., a Jordan curve), Ω_+ is the interior-connected component of $\mathbb{C} \setminus \Gamma$, Ω_- is the exterior-connected component of $\mathbb{C} \setminus \Gamma$, and f is a smooth complex function on Γ , is it possible to find analytic functions F_+ on Ω_+ and F_- on Ω_- , respectively, that have continuous extensions on Γ such that their difference is equal to the given f on Γ ? It turns out that a solution of this problem is given by the functions

$$F_+(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - w} d\zeta, \quad w \in \Omega_+$$

and

$$F_{-}(w) = rac{1}{2\pi i} \int_{\Gamma} rac{f(\zeta)}{\zeta - w} d\zeta, \quad w \in \Omega_{-}.$$

We are would like to study the case in which the Jordan curve Γ passes through infinity, in particular, when it is the graph of a Lipschitz function on **R**. In this case we compute the boundary limits of F_+ and F_- and we see that they give rise to a very interesting operator on the curve Γ . To fix notation we let

$$A: \mathbf{R} \to \mathbf{R}$$

be a Lipschitz function. This means that there is a constant L > 0 such that for all $x, y \in \mathbf{R}$ we have $|A(x) - A(y)| \le L|x - y|$. We define a curve

$$\gamma: \mathbf{R} \to \mathbf{C}$$

by setting

$$\gamma(x) = x + iA(x)$$

and we denote by

$$\Gamma = \{ \gamma(x) : x \in \mathbf{R} \}$$
(4.6.1)

the graph of γ . Given a smooth function f on Γ we set

$$F(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - w} d\zeta, \quad w \in \mathbb{C} \setminus \Gamma.$$
(4.6.2)

We now show that for $z \in \Gamma$, both $F(z+i\delta)$ and $F(z-i\delta)$ have limits as $\delta \downarrow 0$, and these limits give rise to an operator on the curve Γ that we would like to study.

4.6.1 Introduction of the Cauchy Integral Operator along a Lipschitz Curve

Let $f(\zeta)$ be a \mathscr{C}^1 function on the curve Γ that decays faster than $C|\zeta|^{-1}$ as $|\zeta| \to \infty$. For $z \in \Gamma$ we define the *Cauchy integral of f at z* as