4.5 An Almost Orthogonality Lemma and Applications

4.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 4.5.1 regarding pseudodifferential operators. We first introduce pseudodifferential operators.

Definition 4.5.5. Let $m \in \mathbf{R}$ and $0 \le \rho, \delta \le 1$. A \mathscr{C}^{∞} function $\sigma(x, \xi)$ on $\mathbf{R}^n \times \mathbf{R}^n$ is called a *symbol of class* $S^m_{\rho,\delta}$ if for all multi-indices α and β there is a constant $B_{\alpha,\beta}$ such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)| \le B_{\alpha,\beta}(1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}.$$
(4.5.24)

For $\sigma \in S^m_{\rho,\delta}$, the linear operator

$$T_{\sigma}(f)(x) = \int_{\mathbf{R}^n} \sigma(x,\xi) \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

initially defined for *f* in $\mathscr{S}(\mathbf{R}^n)$ is called a *pseudodifferential operator* with symbol $\sigma(x, \xi)$.

Example 4.5.6. Let b be a bounded function on \mathbb{R}^n . Consider the symbol

$$\sigma_b(x,\xi) = \sum_{j \in \mathbf{Z}} (b * \Psi_{2^{-j}})(x) \widehat{\Psi}(2^{-j}\xi), \qquad (4.5.25)$$

where $\widehat{\Psi}$ is a smooth function supported in the annulus $1/2 \le |\xi| \le 2$. It is not hard to see that the symbol σ_b satisfies

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}\sigma_b(x,\xi)| \le C_{\alpha,\beta} \|b\|_{L^{\infty}} |\xi|^{-|\beta|+|\alpha|}$$
(4.5.26)

for all multi-indices α and β . Indeed, every differentiation in *x* produces a factor of 2^j , while every differentiation in ξ produces a factor of 2^{-j} . But since $\widehat{\Psi}$ is supported in $\frac{1}{2} \cdot 2^j \le |\xi| \le 2 \cdot 2^j$, it follows that $|\xi| \approx 2^j$, which yields (4.5.26). It follows that σ_b is not in any of the classes $S^m_{\rho,\delta}$ introduced in Definition 4.5.5, since σ_b is not necessarily smooth at the origin. However, if we restrict the indices of summation in (4.5.25) to $j \ge 0$, then $|\xi| \approx 1 + |\xi|$ and we obtain a symbol of class $S^0_{1,1}$. Note that not all symbols in $S^0_{1,1}$ give rise to bounded operators on L^2 . See Exercise 4.5.6.

An example of a symbol in $S_{1,0}^m$ is $(1+|\xi|^2)^{\frac{1}{2}(m+it)}$ when $m,t \in \mathbf{R}$.

We do not plan to embark on a systematic study of pseudodifferential operators here, but we would like to study the L^2 boundedness of symbols of class $S_{0,0}^0$.

Theorem 4.5.7. Suppose that a symbol σ belongs to the class $S_{0,0}^0$. Then the pseudodifferential operator T_{σ} with symbol σ , initially defined on $\mathscr{S}(\mathbf{R}^n)$, has a bounded extension on $L^2(\mathbf{R}^n)$.