Note that $\widehat{\Phi}(\xi)$ is equal to 1 for $|\xi| \le 2 - \frac{2}{7}$, vanishes when $|\xi| \ge 2$, and satisfies

$$\widehat{\Phi}(\xi) + \sum_{j=1}^{\infty} \widehat{\Psi}(2^{-j}\xi) = 1$$
 (1.3.9)

for all ξ in \mathbb{R}^n . We now introduce an operator S_0^{Φ} by setting

$$S_0^{\mathbf{\Phi}}(f) = \mathbf{\Phi} * f, \tag{1.3.10}$$

for $f \in \mathcal{S}'(\mathbf{R}^n)$. Identity (1.3.9) yields the operator identity

$$S_0^{\Phi} + \sum_{j=1}^{\infty} \Delta_j^{\Psi} = I,$$

in which the series converges in $\mathcal{S}'(\mathbf{R}^n)$, in view of Proposition 1.1.6(b).

Having introduced the relevant background, we are now ready to state and prove the following result.

Theorem 1.3.6. Let Ψ satisfy (1.3.6), Φ be as in (1.3.8), and let Δ_j^{Ψ} , S_0^{Φ} be as in (1.3.7) and (1.3.10), respectively. Fix $s \in \mathbf{R}$ and $1 . Then there exists a constant <math>C_1$ that depends only on n, s, p, Φ , and Ψ such that for all $f \in L_s^p$ we have

$$\left\| S_0^{\Phi}(f) \right\|_{L^p} + \left\| \left(\sum_{j=1}^{\infty} (2^{js} |\Delta_j^{\Psi}(f)|)^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C_1 \|f\|_{L^p_s}. \tag{1.3.11}$$

Conversely, there exists a constant C_2 that depends on the parameters n, s, p, Φ , and Ψ such that every tempered distribution f that satisfies

$$\|S_0^{\Phi}(f)\|_{L^p} + \|\Big(\sum_{i=1}^{\infty} (2^{js}|\Delta_j^{\Psi}(f)|)^2\Big)^{\frac{1}{2}}\|_{L^p} < \infty$$

is an element of the Sobolev space L_s^p with norm

$$||f||_{L_{s}^{p}} \leq C_{2} \left(||S_{0}^{\Phi}(f)||_{L^{p}} + ||\left(\sum_{j=1}^{\infty} (2^{js}|\Delta_{j}^{\Psi}(f)|)^{2}\right)^{\frac{1}{2}}||_{L^{p}} \right).$$
 (1.3.12)

Proof. We denote by C a generic constant that depends on the parameters n, s, p, Φ , and Ψ and that may vary in different occurrences. For a given tempered distribution f we define another tempered distribution f_s by setting

$$f_s = ((1+|\cdot|^2)^{\frac{s}{2}}\widehat{f})^{\vee},$$

so that we have $||f||_{L^p_s} = ||f_s||_{L^p}$ if $f \in L^p_s$.