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(iii) =⇒ (iv)
Fix a C ∞

0 function φ with 0 ≤ φ ≤ 1, supported in the ball B(0,4), and equal to
1 on the ball B(0,2). We consider the functions φ(·/R) that tend to 1 as R → ∞ and
we show that T (1) is the weak limit of the functions T (φ(·/R)). This means that for
all g ∈ D0 (smooth functions with compact support and integral zero) one has〈

T (φ(·/R)),g
〉
→
〈
T (1),g

〉
(4.3.5)

as R → ∞. To prove (4.3.5) we fix a C ∞
0 function η that is equal to one on a neigh-

borhood of the support of g. Then we write〈
T (φ(·/R)),g

〉
=
〈
T (ηφ(·/R)),g

〉
+
〈
T ((1−η)φ(·/R)),g

〉
=
〈
T (ηφ(·/R)),g

〉
+
∫

Rn

∫
Rn

(
K(x,y)−K(x0,y)

)
g(x)(1−η(y))φ(y/R)dydx ,

where x0 is a point in the support of g. There exists an R0 > 0 such that for R ≥ R0,
φ(·/R) is equal to 1 on the support of η , and moreover the expressions∫

Rn

∫
Rn

(
K(x,y)−K(x0,y)

)
g(x)(1−η(y))φ(y/R)dydx

converge to ∫
Rn

∫
Rn

(
K(x,y)−K(x0,y)

)
g(x)(1−η(y))dydx

as R → ∞ by the Lebesgue dominated convergence theorem. Using Definition
4.1.16, we obtain the validity of (4.3.5).

Next we observe that the functions φ(·/R) are in L2. We show that∥∥T (φ(·/R))
∥∥

BMO ≤Cn,δ (A+B3) (4.3.6)

uniformly in R > 0. Once (4.3.6) is established, then the sequence {T (φ(·/ j))}∞
j=1

lies in a multiple of the unit ball of BMO = (H1)∗, and by the Banach–Alaoglou
theorem, there is a subsequence of the positive integers R j such that T (φ(·/R j))
converges weakly∗ to an element b in BMO. This means that〈

T (φ(·/R j)),g
〉
→
〈
b,g
〉

(4.3.7)

as j → ∞ for all g ∈D0. Using (4.3.5), we conclude that T (1) can be identified with
the BMO function b, and as a consequence of (4.3.6) it satisfies∥∥T (1)

∥∥
BMO ≤Cn,δ (A+B3) .

In a similar fashion, we identify T t(1) with a BMO function with norm satisfying∥∥T t(1)
∥∥

BMO ≤Cn,δ (A+B3) .
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We return to the proof of (4.3.6). We fix a ball B=B(x0,r) with radius r > 0 centered
at x0 ∈ Rn. If for all R > 0 we had a constant cB,R such that

1
|B|
∫

B
|T (φ(·/R))(x)− cB,R|dx ≤ cn,δ (A+B3), (4.3.8)

for all R > 0, then property (3) in Proposition 3.1.2 (adapted to balls) would yield
(4.3.6). Obviously, (4.3.8) is a consequence of the two estimates

1
|B|
∫

B
|T
[
φ( ·−x0

r )φ( ·
R )
]
(x)|dx ≤ cn B3 , (4.3.9)

1
|B|
∫

B

∣∣T [(1−φ( ·−x0
r ))φ( ·

R )
]
(x)−T

[
(1−φ( ·−x0

r ))φ( ·
R )
]
(x0)

∣∣dx ≤ cn

δ
A . (4.3.10)

We bound the double integral in (4.3.10) by

1
|B|
∫

B

∫
|y−x0|≥2r

|K(x,y)−K(x0,y)|φ(y/R)dydx , (4.3.11)

since 1−φ((y− x0)/r) = 0 when |y− x0| ≤ 2r. Since |x− x0| ≤ r ≤ 1
2 |y− x0|, con-

dition (4.1.2) gives that (4.3.10) holds with cn = ωn−1 = |Sn−1|.
It remains to prove (4.3.9). It is easy to verify that there is a constant C0 =

C0(n,φ) such that for 0 < ε ≤ 1 and for all a ∈ Rn the functions

C−1
0 φ(ε(x+a))φ(x), C−1

0 φ(x)φ(−a+ εx) (4.3.12)

are normalized bumps. The important observation is that with a = x0/r we have

φ( x
R )φ(

x−x0
r ) = rn

τ
x0
[(

φ
( r

R (·+a)
)
φ(·)

)
r

]
(x) (4.3.13)

= Rn
(

φ(·)φ
(
−a+ R

r (·)
))

R
(x), (4.3.14)

and thus in either case r ≤ R or R ≤ r, one may express the product φ( x
R )φ(

x−x0
r ) as

a multiple of a translation of an L1 dilation of a normalized bump.
Let us suppose that r ≤ R. In view of (4.3.13) we write

T
[
φ( ·−x0

r )φ( ·
R )
]
(x) =C0 rnT

[
τ

x0ϕr
]
(x)

for some normalized bump ϕ . Using this fact and the Cauchy–Schwarz inequality,
we estimate the expression on the left in (4.3.9) by

C0 rn/2

|B| 1
2

rn/2
(∫

B
|T
[
τ

x0ϕr
]
(x)|2 dx

) 1
2
≤ C0 rn/2

|B| 1
2

B3 = cn B3 ,

where the first inequality follows by applying hypothesis (iii).
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We now consider the case R ≤ r. In view of (4.3.14) we write

T
[
φ( ·−x0

r )φ( ·
R )
]
(x) =C0 RnT

(
ϕR
)
(x)

for some other normalized bump ϕ . Using this fact and the Cauchy–Schwarz in-
equality, we estimate the expression on the left in (4.3.9) by

C0 Rn/2

|B| 1
2

Rn/2
(∫

B
|T (ϕR)(x)|2 dx

) 1
2
≤ C0 Rn/2

|B| 1
2

B3 ≤ cn B3

applying hypothesis (iii) and recalling that R ≤ r. This proves (4.3.9).
To finish the proof of (iv), we need to prove that T satisfies the weak boundedness

property. But this is elementary, since for all normalized bumps ϕ and ψ and all
x ∈ Rn and R > 0 we have∣∣〈T (τx

ψR),τ
x
ϕR
〉∣∣ ≤ ∥∥T (τx

ψR)
∥∥

L2

∥∥τ
x
ϕR
∥∥

L2

≤ B3R− n
2
∥∥τ

x
ϕR
∥∥

L2

≤CnB3R−n.

This gives ∥T∥WB ≤CnB3, which implies the estimate B4 ≤Cn,δ (A+B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) =⇒ (L2 boundedness of T )
We now assume condition (iv) and we present the most important step of the

proof, establishing the fact that T has an extension that maps L2(Rn) to itself. The
assumption that the distributions T (1) and T t(1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T .

We pick a smooth radial function Φ with compact support that is supported in the
ball B(0, 1

2 ) and that satisfies
∫

Rn Φ(x)dx = 1. For t > 0 we define Φt(x) = t−nΦ( x
t ).

Since Φ is a radial function, the operator

Pt( f ) = f ∗Φt (4.3.15)

is self-transpose. The operator Pt is a continuous analogue of S j = ∑k≤ j ∆k, where
the ∆ j’s are the Littlewood–Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T ( f ).
We begin with the facts, which can be found in Exercises 4.3.1 and 4.3.2, that

T ( f ) = lim
s→0

P2
s T P2

s ( f ) ,

0 = lim
s→∞

P2
s T P2

s ( f ) ,
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where the first limit is in the topology of S ′(Rn) and the second one is in the
topology of S ′(Rn)/P(Rn). Thus, with the use of the fundamental theorem of
calculus and the product rule, we are able to write

T ( f ) = lim
s→0

P2
s T P2

s ( f )− lim
s→∞

P2
s T P2

s ( f )

= − lim
ε→0

∫ 1
ε

ε

s
d
ds

(
P2

s T P2
s
)
( f )

ds
s

= − lim
ε→0

∫ 1
ε

ε

[
s
(

d
ds

P2
s

)
T P2

s ( f )+P2
s

(
T s

d
ds

P2
s

)
( f )
]

ds
s
, (4.3.16)

where the limit is in the sense of S ′(Rn)/P(Rn). For a Schwartz function g we
have (

s
d
ds

P2
s (g)

)̂
(ξ ) = ĝ(ξ )s

d
ds

Φ̂(sξ )2

= ĝ(ξ )Φ̂(sξ )
(
2sξ ·∇Φ̂(sξ )

)
= ĝ(ξ )

n

∑
k=1

Ψ̂k(sξ )Θ̂k(sξ )

=
n

∑
k=1

(
Q̃k,sQk,s(g)

)̂
(ξ ) =

n

∑
k=1

(
Qk,sQ̃k,s(g)

)̂
(ξ ) ,

where for 1 ≤ k ≤ n, Ψ̂k(ξ ) = 2ξkΦ̂(ξ ), Θ̂k(ξ ) = ∂kΦ̂(ξ ), and Qk,s, Q̃k,s are opera-
tors defined by

Qk,s(g) = g∗ (Ψk)s , Q̃k,s(g) = g∗ (Θk)s ;

here (Θk)s(x) = s−nΘk(s−1x) and (Ψk)s are defined similarly. Observe that Ψk and
Θk are smooth odd bumps supported in B(0, 1

2 ) and have integral zero. Since Ψk and
Θk are odd, they are anti-self-transpose, meaning that (Qk,s)

t =−Qk,s and (Q̃k,s)
t =

−Q̃k,s. We now write the expression in (4.3.16) as

− lim
ε→0

n

∑
k=1

[∫ 1
ε

ε

Q̃k,sQk,sT PsPs( f )
ds
s
+
∫ 1

ε

ε

PsPsT Qk,sQ̃k,s( f )
ds
s

]
, (4.3.17)

where the limit is in the sense of S ′(Rn)/P(Rn). We set

Tk,s = Qk,sT Ps ,

and we observe that the operator PsT Qk,s is equal to −((T t)k,s)
t .

Recall the notation τxh(z) = h(z− x). For a given ϕ ∈ S (Rn) we have

Qk,sT Ps(ϕ)(x) = −
〈

T Ps(ϕ) , τ
x(Ψk)s

〉
= −

〈
T
(
Φs ∗ϕ

)
, τ

x(Ψk)s

〉
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= −
〈

T
(∫

Rn
ϕ(y)(τy

Φs)dy
)
, τ

x(Ψk)s

〉
= −

∫
Rn

〈
T
(
τ

y
Φs
)
, τ

x(Ψk)s
〉
ϕ(y)dy . (4.3.18)

The last equality is justified by the convergence of the Riemann sums RN of the inte-
gral I =

∫
Rn ϕ(y)(τyΦs)(·)dy to itself in the topology of S (this is contained in the

proof of Theorem 2.3.20 in [156]); by the continuity of T , T (RN) converges to T (I)
in S ′ and thus ⟨T (RN),τ

x(Ψk)s⟩ converges to ⟨T (I),τx(Ψk)s⟩. But ⟨T (RN),τ
x(Ψk)s⟩

is also a Riemann sum for the rapidly convergent integral in (4.3.18); hence it con-
verges to it as well.

We deduce that the operator Tk,s = Qk,sT Ps has kernel

Kk,s(x,y) =−
〈
T (τy

Φs),τ
x(Ψk)s

〉
=−

〈
T t(τx(Ψk)s),τ

y
Φs
〉
. (4.3.19)

Hence, the operator PsT Qk,s =−((T t)k,s)
t has kernel〈

T t(τx
Φs),τ

y(Ψk)s
〉
=
〈
T (τy(Ψk)s),τ

x
Φs
〉
.

For 1 ≤ k ≤ n we need the following facts regarding these kernels:∣∣〈T (τy(Ψk)s),τ
x
Φs
〉∣∣ ≤ Cn,δ

(
∥T∥WB +A

)
ps(x− y) , (4.3.20)∣∣〈T t(τx(Ψk)s),τ

y
Φs
〉∣∣ ≤ Cn,δ

(
∥T∥WB +A

)
ps(x− y) , (4.3.21)

where
pt(u) =

1
tn

1
(1+ | u

t |)n+δ

is the L1 dilation of the function p(u) = (1+ |u|)−n−δ .
To prove (4.3.21), we consider the following two cases: If |x− y| ≤ 5s, then the

weak boundedness property gives

∣∣〈T (τy
Φs),τ

x(Ψk)s
〉∣∣= ∣∣〈T (τx((τ

y−x
s Φ)s)),τ

x(Ψk)s
〉∣∣≤ Cn,Φ∥T∥WB

sn ,

since both Ψk and τ
y−x

s Φ are multiples of normalized bumps. Notice here that both
of these functions are supported in B(0,10), since 1

s |x−y| ≤ 5. This estimate proves
(4.3.21) when |x− y| ≤ 5s.

We now turn to the case |x− y| ≥ 5s. Then the functions τyΦs and τx(Ψk)s have
disjoint supports and so we have the integral representation〈

T t(τx(Ψk)s),τ
y
Φs
〉
=
∫

Rn

∫
Rn

Φs(v− y)K(u,v)(Ψk)s(u− x)dudv .

Using that Ψk has mean value zero, we can write the previous expression as∫
Rn

∫
Rn

Φs(v− y)
(
K(u,v)−K(x,v)

)
(Ψk)s(u− x)dudv .
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We observe that |u− x| ≤ s and |v− y| ≤ s in the preceding double integral. Since
|x− y| ≥ 5s, this makes |u− v| ≥ |x− y| − 2s ≥ 3s, which implies that |u− x| ≤
1
2 |u− v|. Using (4.1.2), we obtain

|K(u,v)−K(x,v)| ≤ A|x−u|δ
(|u− v|+ |x− v|)n+δ

≤Cn,δ A
sδ

|x− y|n+δ
,

where we used the fact that |u− v| ≈ |x− y|. Inserting this estimate in the double
integral, we obtain (4.3.21). Estimate (4.3.20) is proved similarly.

At this point we drop the dependence of Qk,s and Q̃k,s on the index k, since we
can concentrate on one term of the sum in (4.3.17). We have managed to express
−T ( f ) as a finite sum of operators of the form∫

∞

0
Q̃sTsPs( f )

ds
s

(4.3.22)

and of the form ∫
∞

0
PsTsQ̃s( f )

ds
s
, (4.3.23)

where the preceding integrals converge in S ′(Rn)/P(Rn) and the Ts’s have kernels
Ks(x,y), which are pointwise dominated by a constant multiple of (A+B4)ps(x−y).

It suffices to obtain L2 bounds for an operator of the form (4.3.22) with constant
at most a multiple of A + B4. Then by duality the same estimate also holds for
the operators of the form (4.3.23). We make one more observation. Using (4.3.19)
(recall that we have dropped the indices k), we obtain

Ts(1)(x) =
∫

Rn
Ks(x,y)dy =

〈
T t(τx

Ψs),1
〉
= (Ψs ∗T (1))(x) , (4.3.24)

where all integrals converge absolutely.
We can therefore concentrate on the L2 boundedness of the operator in (4.3.22).

We pair this operator with a Schwartz function g in S0(Rn) and we use the conver-
gence of the integral in S ′/P(Rn) and the property (Q̃s)

t =−Q̃s to obtain〈∫ ∞

0
Q̃sTsPs( f )

ds
s
,g
〉
=
∫

∞

0

〈
Q̃sTsPs( f ),g

〉 ds
s

=−
∫

∞

0

〈
TsPs( f ), Q̃s(g)

〉 ds
s
.

The intuition here is as follows: Ts is an averaging operator at scale s and Ps( f ) is
essentially constant on that scale. Therefore, the expression TsPs( f ) must look like
Ts(1)Ps( f ). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TsPs( f ) = Ts(1)Ps( f )+
[
TsPs( f )−Ts(1)Ps( f )

]
. (4.3.25)


