1.3 Sobolev Spaces

it follows that

$$\left| \left(\widehat{f}(\xi)(1+|\xi|^2)^{\frac{k}{2}}\right)^{\vee} \right\|_{L^p} \leq C_{p,n,k} \sum_{|\gamma| \leq k} \left\| (\widehat{f}(\xi)\xi^{\gamma})^{\vee} \right\|_{L^p} < \infty.$$

Example 1.3.3. Every Schwartz function lies in $L_s^p(\mathbf{R}^n)$ for *s* real. Sobolev spaces with negative indices can indeed contain tempered distributions that are not locally integrable functions. For example, consider the Dirac mass at the origin δ_0 . Then $\|\delta_0\|_{L_{-s}^p(\mathbf{R}^n)} = (2\pi)^{\frac{n}{p}-n} \|G_s\|_{L^p}$ when s > 0. For $s \ge n$ this quantity is always finite in view of Proposition 1.2.5. For 0 < s < n the function $G_s(x) = ((1+|\xi|^2)^{-\frac{s}{2}})^{\vee}(x)$ is integrable to the power *p* as long as (s-n)p > -n, that is, when $1 . We conclude that <math>\delta_0$ lies in $L_{-s}^p(\mathbf{R}^n)$ for 1 when <math>0 < s < n and in $L_{-s}^p(\mathbf{R}^n)$ for all $1 when <math>s \ge n$.

Example 1.3.4. We consider the function h(t) = 1 - t for $0 \le t \le 1$, h(t) = 1 + t for $-1 \le t < 0$, and h(t) = 0 for |t| > 1. Obviously, the distributional derivative of h is the function $h'(t) = \chi_{(-1,0)} - \chi_{(0,1)}$. The distributional second derivative h'' is equal to $\delta_1 + \delta_{-1} - 2\delta_0$; see Exercise 2.3.4(a) in [156]. Clearly, h'' does not belong to any L^p space; hence h is not in $L_2^p(\mathbf{R})$. But for 1 , <math>h lies in $L_1^p(\mathbf{R})$, and we thus have an example of a function in $L_1^p(\mathbf{R})$ but not in $L_2^p(\mathbf{R})$.

Definition 1.3.2 allows us to fine-tune the smoothness of *h* by finding all *s* for which *h* lies in $L_s^p(\mathbf{R})$. An easy calculation gives

$$\widehat{h}(\xi) = \frac{e^{2\pi i\xi} + e^{-2\pi i\xi} - 2}{4\pi^2 |\xi|^2}$$

Fix a smooth function φ that is equal to one in a neighborhood of infinity and vanishes in the interval [-2,2]. Then $(\widehat{h}(\xi)(1+|\xi|^2)^{s/2}(1-\varphi(\xi)))^{\vee}$ is the inverse Fourier transform of a smooth function with compact support; hence it is a Schwartz function and belongs to all L^p spaces. It suffices to examine for which p the function

$$u = \left((1+|\xi|^2)^{s/2} \, \frac{e^{2\pi i\xi} + e^{-2\pi i\xi} - 2}{4\pi^2 (1+|\xi|^2)} \, \varphi(\xi) \frac{1+|\xi|^2}{|\xi|^2} \right)^{\vee} \tag{1.3.4}$$

lies in $L^p(\mathbf{R})$. We first observe that the function u in (1.3.4) lies in $L^p(\mathbf{R})$ if and only if the function

$$v = \left((1+|\xi|^2)^{s/2} \, \frac{e^{2\pi i\xi} + e^{-2\pi i\xi} - 2}{4\pi^2 (1+|\xi|^2)} \right)^{\vee} \tag{1.3.5}$$

lies in $L^p(\mathbf{R})$. Indeed, if *v* lies in L^p , then *u* lies in L^p for $1 in view of Theorem 6.2.7 in [156], since the bounded function <math>m(\xi) = \varphi(\xi) \frac{1+|\xi|^2}{|\xi|^2}$ satisfies the Mihlin condition $|m'(\xi)| \le C|\xi|^{-1}$. Conversely, if *u* lies in L^p , then

$$v = \left(\widehat{v}(\xi) \left(1 - \varphi\right)(\xi)\right)^{\vee} + \left(\widehat{u}(\xi) \frac{|\xi|^2}{1 + |\xi|^2}\right)^{\vee},$$