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Proposition 4.2.3. Let T be an operator in CZO(3,A, B) associated with a kernel
K. Then for g € LP(R"), 1 < p < oo, the following absolutely convergent integral
representation is valid:

T(g)(x) = | K(xy)g()dy (4.2.1)

Sfor almost all x € R"\ supp g, provided that supp g ;Cé R".

Proof. Set gi(x) = §(X)X|g(x)|<kX|x|<k- These are L” functions with compact support
contained in the support of g. Also, the g; converge to g in L” as k — co. In view of
Proposition 4.1.9, for every k we have

T(g0() = [ K(xy)gls)dy

for almost all x € R™\ supp g. Since T maps L to L” (or to weak L' when p = 1), it
follows that T'(g) converges to T(g) in weak L? and hence in measure. By Propo-
sition 1.1.9 in [156], a subsequence of T'(g;) converges to T (g) almost everywhere.
On the other hand, for x € R" \ supp g we have
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when k — o, since the absolute value of the difference is bounded by B'||gr — gl|»,
which tends to zero. The constant B’ is the L” norm of the function |x —y|~" on the
support of g; one has |x —y| > ¢ > 0 for all y in the support of g and thus B’ < 0.
Therefore T(gx)(x) converges a.e. to both sides of the identity (4.2.1) for x not in
the support of g. This concludes the proof of this identity. (|

4.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is a result concerning the maximal singular
integral operator T®) analogous to Theorem 4.2.2. We note that given f in L”(R")
for some 1 < p < oo, the expression 7*)(f)(x) is well defined for all x € R". This
is a simple consequence of estimate (4.1.1) and Holder’s inequality.

Theorem 4.2.4. Let K be in SK(5,A) and T in CZO(J,A, B) be associated with K.
Let r € (0,1). Then there is a constant C(n,r) such that Cotlar’s inequality
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is valid for all functions in | <, L” (R") and all x € R". Also, there exist dimen-
sional constants Cy,,C), such that

1T )|y < CoA+B| |1 ey (4.2.3)

1T |y < CalA+Bymax(p, (p = 1)) £l ) - (4.2.4)

forall 1<p < e andall f in LP(R").

Proof. We fixrsothat0 < r < 1and f € LP(R") for some p satisfying 1 < p < . To
prove (4.2.2), we fix x € R", € > 0, and we set f(f’x = fXB(r.e) and [ = S XB(xe)
Since x §£ supp f“, using Proposition 4.2.3 we should be able to write

9= [ KON W= [ K F0)dy =T ) ).

But as identity (4.2.1) holds a.e., this may not be valid for our fixed x € R". To
address this issue, we pick w; € B(x, €) such that w; — x and

TE ) ) = [ KOwp) /2 0)dy= [ Klwpy)f(3)dy
JRn Jx—y|=e
If yis such [x—y| > €, then for j large we have |z—w| < 1|w; —y]| WhenzeB( £).
In view of (4.2.1), Fatou’s lemma, and (4.1.2), for almost all z € B(x, ) we have

limsup T (f5) (w;) — T (f2")(2)| = limsup /|Hﬁ\>.g (K(wj,y) —K(z,y)) f(v)dy
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<CosAM(f)(x),

where in the last estimate we made use of Theorem 2.1.10 in [156]. Thus
T (f)(x)] < limsup T (£5%) (w)) = T(f5) (@) |+ T (f) ()],
jeo
and from this we derive that for almost all z € B(x, §) one has

ITE(F)(0)] < Cos AM(F)(x) +IT(f5) @) +IT(£)(2)]. (4.2.5)
For 0 < r < 1 it follows from (4.2.5) that for almost all z € B(x, §) we have
ITE ()] < C s A M) @) +T(f) @) +ITHE) - (4.2.6)

Integrating over z € B(x, £), dividing by [B(x, £)|, and raising to the power 1, we

obtain

ITE(f)(x)] <37 { w5 AM(f)(x) ( |/ TR |’dz)1

J
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+M(|T(f)]")(x)



