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Proposition 4.2.3. Let T be an operator in CZO(δ ,A,B) associated with a kernel
K. Then for g ∈ Lp(Rn), 1 ≤ p < ∞, the following absolutely convergent integral
representation is valid:

T (g)(x) =
∫

Rn
K(x,y)g(y)dy (4.2.1)

for almost all x ∈ Rn \ supp g, provided that supp g ⫋ Rn.

Proof. Set gk(x) = g(x)χ|g(x)|≤kχ|x|≤k. These are Lp functions with compact support
contained in the support of g. Also, the gk converge to g in Lp as k → ∞. In view of
Proposition 4.1.9, for every k we have

T (gk)(x) =
∫

Rn
K(x,y)gk(y)dy

for almost all x ∈ Rn \ supp g. Since T maps Lp to Lp (or to weak L1 when p = 1), it
follows that T (gk) converges to T (g) in weak Lp and hence in measure. By Propo-
sition 1.1.9 in [156], a subsequence of T (gk) converges to T (g) almost everywhere.
On the other hand, for x ∈ Rn \ supp g we have∫

Rn
K(x,y)gk(y)dy →

∫
Rn

K(x,y)g(y)dy

when k → ∞, since the absolute value of the difference is bounded by B′∥gk −g∥Lp ,
which tends to zero. The constant B′ is the Lp′ norm of the function |x− y|−n on the
support of g; one has |x− y| ≥ c > 0 for all y in the support of g and thus B′ < ∞.
Therefore T (gk)(x) converges a.e. to both sides of the identity (4.2.1) for x not in
the support of g. This concludes the proof of this identity. □

4.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is a result concerning the maximal singular
integral operator T (∗) analogous to Theorem 4.2.2. We note that given f in Lp(Rn)
for some 1 ≤ p < ∞, the expression T (∗)( f )(x) is well defined for all x ∈ Rn. This
is a simple consequence of estimate (4.1.1) and Hölder’s inequality.

Theorem 4.2.4. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Let r ∈ (0,1). Then there is a constant C(n,r) such that Cotlar’s inequality

|T (∗)( f )(x)| ≤C(n,r)
[
M(|T ( f )|r)(x) 1

r +(A+B)M( f )(x)
]

(4.2.2)
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is valid for all functions in
⋃

1≤p<∞ Lp(Rn) and all x ∈ Rn. Also, there exist dimen-
sional constants Cn,C′

n such that∥∥T (∗)( f )
∥∥

L1,∞(Rn)
≤ C′

n(A+B)
∥∥ f
∥∥

L1(Rn)
, (4.2.3)∥∥T (∗)( f )

∥∥
Lp(Rn)

≤ Cn(A+B)max(p,(p−1)−1)
∥∥ f
∥∥

Lp(Rn)
, (4.2.4)

for all 1< p < ∞ and all f in Lp(Rn).
Proof. We fix r so that 0< r < 1 and f ∈ Lp(Rn) for some p satisfying 1≤ p<∞. To
prove (4.2.2), we fix x ∈ Rn, ε > 0, and we set f ε,x

0 = f χB(x,ε) and f ε,x
∞ = f χB(x,ε)c .

Since x /∈ supp f ε,x
∞ , using Proposition 4.2.3 we should be able to write

T ( f ε,x
∞ )(x) =

∫
Rn

K(x,y) f ε,x
∞ (y)dy =

∫
|x−y|≥ε

K(x,y) f (y)dy = T (ε)( f )(x) .

But as identity (4.2.1) holds a.e., this may not be valid for our fixed x ∈ Rn. To
address this issue, we pick w j ∈ B(x,ε) such that w j → x and

T ( f ε,x
∞ )(w j) =

∫
Rn

K(w j,y) f ε,x
∞ (y)dy =

∫
|x−y|≥ε

K(w j,y) f (y)dy.

If y is such |x−y| ≥ ε , then for j large we have |z−w j| ≤ 1
2 |w j−y| when z∈B(x, ε

2 ).
In view of (4.2.1), Fatou’s lemma, and (4.1.2), for almost all z ∈ B(x, ε

2 ) we have

limsup
j→∞

|T ( f ε,x
∞ )(w j)−T ( f ε,x

∞ )(z)|= limsup
j→∞

∣∣∣∣∫|x−y|≥ε

(
K(w j,y)−K(z,y)

)
f (y)dy

∣∣∣∣
≤
∫
|x−y|≥ε

limsup
j→∞

A |z−w j|δ | f (y)|
(|w j − y|+ |z− y|)n+δ

dy

≤
(

ε

2

)δ
∫
|x−y|≥ε

A | f (y)|dy
(|x− y|+ ε/2)n+δ

≤Cn,δ AM( f )(x) ,

where in the last estimate we made use of Theorem 2.1.10 in [156]. Thus
|T (ε)( f )(x)| ≤ limsup

j→∞

|T ( f ε,x
∞ )(w j)−T ( f ε,x

∞ )(z)|+ |T ( f ε,x
∞ )(z)|,

and from this we derive that for almost all z ∈ B(x, ε

2 ) one has

|T (ε)( f )(x)| ≤Cn,δ AM( f )(x)+ |T ( f ε,x
0 )(z)|+ |T ( f )(z)|. (4.2.5)

For 0 < r < 1 it follows from (4.2.5) that for almost all z ∈ B(x, ε

2 ) we have

|T (ε)( f )(x)|r ≤Cr
n,δ Ar M( f )(x)r + |T ( f ε,x

0 )(z)|r + |T ( f )(z)|r . (4.2.6)

Integrating over z ∈ B(x, ε

2 ), dividing by |B(x, ε

2 )|, and raising to the power 1
r , we

obtain

|T (ε)( f )(x)| ≤ 3
1
r

[
Cn,δ AM( f )(x)+

(
1

|B(x, ε

2 )|
∫

B(x, ε
2 )
|T ( f ε,x

0 )(z)|rdz
)1

r

+M(|T ( f )|r)(x) 1
r

]
.


