4 Singular Integrals of Nonconvolution Type

Indeed, define

$$\langle W, F \rangle = \lim_{\varepsilon \to 0} \iint_{|x-y| > \varepsilon} K(x,y) F(x,y) \, dy \, dx$$
 (4.1.10)

for all F in the Schwartz class of \mathbf{R}^{2n} . In view of antisymmetry, we may write

$$\iint_{|x-y|>\varepsilon} K(x,y)F(x,y)\,dy\,dx = \frac{1}{2} \iint_{|x-y|>\varepsilon} K(x,y)\big(F(x,y)-F(y,x)\big)\,dy\,dx\,.$$

In view of (4.1.1), the observation that

$$|F(x,y) - F(y,x)| \le \frac{2|x-y|}{(1+|x|^2+|y|^2)^{n+1}} \sup_{(t,s)\in\mathbf{R}^{2n}} \left|\nabla_{t,s} \left((1+|t|^2+|s|^2)^{n+1}F(t,s) \right) \right|,$$

and the fact that the preceding supremum is controlled by a finite sum of Schwartz seminorms of *F*, the limit in (4.1.10) exists and gives a tempered distribution on \mathbb{R}^{2n} . We can therefore define an operator $T : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}'(\mathbb{R}^n)$ with kernel *W* via

$$\langle T(f), \varphi \rangle = \lim_{\varepsilon \to 0} \iint_{|x-y| > \varepsilon} K(x,y) f(y) \varphi(x) \, dy \, dx$$

= $\frac{1}{2} \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x,y) [f(y)\varphi(x) - f(x)\varphi(y)] \, dy \, dx,$ (4.1.11)

for all $f, \varphi \in \mathscr{S}(\mathbf{R}^n)$.

Example 4.1.6. Let *A* be a real-valued Lipschitz function on **R**. This means that it satisfies the estimate $|A(x) - A(y)| \le L|x - y|$ for some $L < \infty$ and all $x, y \in \mathbf{R}$. For $x, y \in \mathbf{R}, x \neq y$, we let

$$K_A(x,y) = \frac{1}{x - y + i(A(x) - A(y))}.$$
(4.1.12)

A simple calculation gives that when $|y - y'| \le \frac{1}{2} \max(|x - y|, |x - y'|)$ then

$$|K_A(x,y) - K_A(x,y')| \le \frac{|y - y'| + |A(y) - A(y')|}{|x - y||x - y'|} \le \frac{(1 + L)|y - y'|}{\frac{1}{8}(|x - y| + |x - y'|)^2}$$

where the last inequality uses the observation in Remark 4.1.1. Since K_A is antisymmetric, it follows that it is a standard kernel in SK(1,8(1+L)).

Example 4.1.7. Let the function *A* be as in the previous example. For each integer $m \ge 1$ and $x, y \in \mathbf{R}$ we set

$$K_m(x,y) = \left(\frac{A(x) - A(y)}{x - y}\right)^m \frac{1}{x - y}.$$
(4.1.13)

214

4.1 General Background and the Role of BMO

Clearly, K_m is an antisymmetric function. To see that each K_m is a standard kernel, notice that when $|y - y'| \le \frac{1}{2} \max(|x - y|, |x - y'|)$ we have

$$\begin{aligned} \left| \frac{A(x) - A(y)}{x - y} - \frac{A(x) - A(y')}{x - y'} \right| &= \left| \frac{(x - y)(A(y') - A(y)) + (y - y')(A(x) - A(y))}{(x - y)(x - y')} \right| \\ &\leq 2L \frac{|y - y'|}{|x - y'|}. \end{aligned}$$

Combining this fact with $|a^m - b^m| \le |a - b|(|a|^{m-1} + |a|^{m-2}|b| + \dots + |b|^{m-1})$ we obtain

$$\begin{aligned} \left| K_m(x,y) - K_m(x,y') \right| \\ &\leq \left| \left(\frac{A(x) - A(y)}{x - y} \right)^m - \left(\frac{A(x) - A(y')}{x - y'} \right)^m \right| \frac{1}{|x - y|} + \left| \frac{A(x) - A(y')}{x - y'} \right|^m \left| \frac{1}{x - y} - \frac{1}{x - y'} \right| \\ &\leq \frac{2L|y - y'|}{|x - y'|} m L^{m-1} \frac{1}{|x - y|} + L^m \frac{|y - y'|}{|x - y| |x - y'|} \\ &= \frac{(2m + 1)L^m |y - y'|}{|x - y| |x - y'|} \\ &\leq \frac{8(2m + 1)L^m |y - y'|}{(|x - y| + |x - y'|)^2}. \end{aligned}$$

It follows that K_m lies in $SK(\delta, C)$ with $\delta = 1$ and $C = 8(2m+1)L^m$. The linear operator with kernel $(\pi i)^{-1}K_m$ is called the *m*th *Calderón commutator*.

4.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators associated with them.

Definition 4.1.8. Let $0 < \delta, A < \infty$, and *K* in *SK*(δ, A). A continuous linear operator *T* from $\mathscr{S}(\mathbf{R}^n)$ to $\mathscr{S}'(\mathbf{R}^n)$ is said to be *associated with K* if it satisfies

$$T(f)(x) = \int_{\mathbf{R}^n} K(x, y) f(y) \, dy \tag{4.1.14}$$

for all $f \in \mathscr{C}_0^{\infty}$ and x not in the support of f. If T is associated with K, then the Schwartz kernel W of T coincides with K on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x,x) : x \in \mathbb{R}^n\}$.

If T is associated with K and satisfies

$$\|T(\varphi)\|_{L^2} \le B \|\varphi\|_{L^2}$$
 (4.1.15)

for all $\varphi \in \mathscr{S}(\mathbb{R}^n)$, then *T* is called a *Calderón–Zygmund operator* associated with the standard kernel *K*. Such operators *T* admit a bounded extension on $L^2(\mathbb{R}^n)$, i.e.,

given any f in $L^2(\mathbf{R}^n)$ one can define T(f) as the unique L^2 limit of the Cauchy sequence $\{T(\varphi_k)\}_k$, where $\varphi_k \in \mathscr{S}(\mathbf{R}^n)$ and φ_k converges to f in L^2 . In this case we keep the same notation for the L^2 extension of T.

In the sequel we denote by $CZO(\delta, A, B)$ the class of all Calderón–Zygmund operators associated with standard kernels in $SK(\delta, A)$ that admit L^2 –bounded extensions with norm at most B.

We make the point that there may be several Calderón–Zygmund operators associated with a given standard kernel K. For instance, we may check that the zero operator and the identity operator have the same kernel K(x,y) = 0. We investigate connections between any two such operators in Proposition 4.1.11. Next we discuss the important fact that once an operator T admits an extension that is L^2 bounded, then (4.1.14) holds for all f that are bounded and compactly supported whenever the point x does not lie in its support.

Proposition 4.1.9. Let *T* be an element of $CZO(\delta, A, B)$ associated with a standard kernel *K*. Then for every *f* and φ bounded and compactly supported functions that satisfy

$$\operatorname{list}\left(\operatorname{supp}\boldsymbol{\varphi},\operatorname{supp}f\right) > 0,\tag{4.1.16}$$

then we have the (absolutely convergent) integral representation

$$\int_{\mathbf{R}^n} T(f)(x)\,\boldsymbol{\varphi}(x)\,dx = \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x,y)f(y)\boldsymbol{\varphi}(x)\,dy\,dx\,. \tag{4.1.17}$$

Moreover, given any bounded function with compact support f, there is a set of measure zero E(f) such that $x_0 \notin E(f) \cup$ supp f we have the (absolutely convergent) integral representation

$$T(f)(x_0) = \int_{\mathbf{R}^n} K(x_0, y) f(y) \, dy.$$
(4.1.18)

Proof. We first prove (4.1.17). Given f and φ bounded functions with compact support select $f_j, \varphi_j \in \mathscr{C}_0^{\infty}$ such that φ_j are uniformly bounded and supported in a small neighborhood of the support of $\varphi, \varphi_j \to \varphi$ in L^2 and almost everywhere, $f_j \to f$ in L^2 and almost everywhere, and

dist
$$(\operatorname{supp} \varphi_j, \operatorname{supp} f_j) \ge \frac{1}{2} \operatorname{dist} (\operatorname{supp} \varphi, \operatorname{supp} f) = c > 0$$

for all $j \in \mathbb{Z}^+$. In view of (4.1.7), identity (4.1.17) is valid for the functions f_j and φ_j in place of f and φ , i.e.,

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x, y) f_j(y) \varphi_j(x) \, dy \, dx = \int_{\mathbf{R}^n} T(f_j)(x) \varphi_j(x) \, dx \,. \tag{4.1.19}$$

216

4.1 General Background and the Role of BMO

By the boundedness of *T*, it follows that $T(f_j)$ converges to T(f) in L^2 and thus as $j \to \infty$ we have

$$\int_{\mathbf{R}^n} T(f_j)(x)\varphi_j(x)\,dx \to \int_{\mathbf{R}^n} T(f)(x)\varphi(x)\,dx. \tag{4.1.20}$$

Now write $f_j(y)\varphi_j(x) - f(y)\varphi(x) = (f_j(y) - f(y))\varphi_j(x) + f(y)(\varphi_j(x) - \varphi(x))$ and observe that

$$\left| \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x, y) f(y)(\varphi_j(x) - \varphi(x)) \, dy \, dx \right| \le A c^{-n} \|f\|_{L^1} \|\varphi_j - \varphi\|_{L^1} \to 0,$$

since $\|\boldsymbol{\varphi}_j - \boldsymbol{\varphi}\|_{L^1} \leq C \|\boldsymbol{\varphi}_j - \boldsymbol{\varphi}\|_{L^2} \to 0$ as $j \to \infty$, and

$$\left| \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x, y) (f_j(y) - f(y)) \varphi_j(x) \, dy \, dx \right| \le A c^{-n} \|f_j - f\|_{L^1} \|\varphi\|_{L^1} \to 0,$$

as $j \rightarrow \infty$. Combining these facts with (4.1.19) and (4.1.20) we obtain

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x, y) f_j(y) \varphi_j(x) \, dy \, dx \to \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} K(x, y) f(y) \varphi(x) \, dy \, dx$$

as $j \to \infty$ and proves the validity of (4.1.17). Note that the double integral on the right is absolutely convergent and bounded by $A(2c)^{-n} ||f||_{L^1} ||\varphi||_{L^1}$.

To prove (4.1.18) we fix a compactly supported and bounded function f and we pick f_j as before. Then $T(f_j)$ converges to T(f) in L^2 and thus a subsequence $T(f_{j_l})$ converges pointwise on $\mathbb{R}^n \setminus E(f)$, for some measurable set E(f) with |E(f)| = 0. Given $x_0 \notin E(f) \cup \text{supp } f$ we have

$$T(f_{j_l})(x_0) = \int_{\mathbf{R}^n} K(x_0, y) f_{j_l}(y) \, dy$$

and letting $l \to \infty$ we obtain (4.1.18) since $T(f_{j_l})(x_0) \to T(f)(x_0)$ and

$$\left| \int_{\mathbf{R}^n} K(x_0, y) f_{j_l}(y) \, dy - \int_{\mathbf{R}^n} K(x_0, y) f(y) \, dy \right| \le A c^{-n} \|f_{j_l} - f\|_{L^1} \to 0.$$

as $l \rightarrow \infty$. Thus (4.1.18) holds.

We now define truncated kernels and operators.

Definition 4.1.10. Given a kernel *K* in *SK*(δ ,*A*) and ε > 0, we define the *truncated kernel*

$$K^{(\varepsilon)}(x,y) = K(x,y)\chi_{|x-y|>\varepsilon}$$

Given a continuous linear operator *T* from $\mathscr{S}(\mathbf{R}^n)$ to $\mathscr{S}'(\mathbf{R}^n)$ and $\varepsilon > 0$, we define the *truncated operator* $T^{(\varepsilon)}$ by

$$T^{(\varepsilon)}(f)(x) = \int_{\mathbf{R}^n} K^{(\varepsilon)}(x, y) f(y) \, dy$$