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Indeed, define 〈
W,F

〉
= lim

ε→0

∫∫
|x−y|>ε

K(x,y)F(x,y)dydx (4.1.10)

for all F in the Schwartz class of R2n. In view of antisymmetry, we may write∫∫
|x−y|>ε

K(x,y)F(x,y)dydx =
1
2

∫∫
|x−y|>ε

K(x,y)
(
F(x,y)−F(y,x)

)
dydx .

In view of (4.1.1), the observation that

|F(x,y)−F(y,x)| ≤ 2 |x− y|
(1+ |x|2 + |y|2)n+1 sup

(t,s)∈R2n

∣∣∣∇t,s

(
(1+ |t|2 + |s|2)n+1F(t,s)

)∣∣∣ ,
and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F , the limit in (4.1.10) exists and gives a tempered distribution on
R2n. We can therefore define an operator T : S (Rn)→S ′(Rn) with kernel W via〈

T ( f ),ϕ
〉
= lim

ε→0

∫∫
|x−y|>ε

K(x,y) f (y)ϕ(x)dydx

=
1
2

∫
Rn

∫
Rn

K(x,y)[ f (y)ϕ(x)− f (x)ϕ(y)]dydx , (4.1.11)

for all f ,ϕ ∈S (Rn).

Example 4.1.6. Let A be a real-valued Lipschitz function on R. This means that it
satisfies the estimate |A(x)−A(y)| ≤ L|x− y| for some L < ∞ and all x,y ∈ R. For
x,y ∈ R, x 6= y, we let

KA(x,y) =
1

x− y+ i(A(x)−A(y))
. (4.1.12)

A simple calculation gives that when |y− y′| ≤ 1
2 max

(
|x− y|, |x− y′|

)
then

|KA(x,y)−KA(x,y′)| ≤
|y− y′|+ |A(y)−A(y′)|

|x− y||x− y′| ≤ (1+L)|y− y′|
1
8 (|x− y|+ |x− y′|)2

where the last inequality uses the observation in Remark 4.1.1. Since KA is antisym-
metric, it follows that it is a standard kernel in SK(1,8(1+L)).

Example 4.1.7. Let the function A be as in the previous example. For each integer
m≥ 1 and x,y ∈ R we set

Km(x,y) =
(

A(x)−A(y)
x− y

)m 1
x− y

. (4.1.13)
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Clearly, Km is an antisymmetric function. To see that each Km is a standard kernel,
notice that when |y− y′| ≤ 1

2 max
(
|x− y|, |x− y′|

)
we have∣∣∣∣A(x)−A(y)

x− y
− A(x)−A(y′)

x− y′

∣∣∣∣ = ∣∣∣∣ (x− y)(A(y′)−A(y))+(y− y′)(A(x)−A(y))
(x− y)(x− y′)

∣∣∣∣
≤ 2L

|y− y′|
|x− y′| .

Combining this fact with |am− bm| ≤ |a− b|(|a|m−1+ |a|m−2|b|+ · · ·+ |b|m−1) we
obtain∣∣Km(x,y)−Km(x,y′)

∣∣
≤
∣∣∣∣(A(x)−A(y)

x− y

)m

−
(

A(x)−A(y′)
x− y′

)m∣∣∣∣ 1
|x− y| +

∣∣∣∣A(x)−A(y′)
x− y′

∣∣∣∣m∣∣∣∣ 1
x− y

− 1
x− y′

∣∣∣∣
≤ 2L|y− y′|
|x− y′| mLm−1 1

|x− y| +Lm |y− y′|
|x− y| |x− y′|

=
(2m+1)Lm|y− y′|
|x− y| |x− y′|

≤ 8(2m+1)Lm|y− y′|
(|x− y|+ |x− y′|)2 .

It follows that Km lies in SK(δ ,C) with δ = 1 and C = 8(2m+1)Lm. The linear
operator with kernel (πi)−1Km is called the mth Calderón commutator.

4.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 4.1.8. Let 0 < δ ,A < ∞, and K in SK(δ ,A). A continuous linear operator
T from S (Rn) to S ′(Rn) is said to be associated with K if it satisfies

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy (4.1.14)

for all f ∈ C ∞
0 and x not in the support of f . If T is associated with K, then the

Schwartz kernel W of T coincides with K on Rn×Rn \{(x,x) : x ∈ Rn}.
If T is associated with K and satisfies∥∥T (ϕ)

∥∥
L2 ≤ B‖ϕ‖L2 (4.1.15)

for all ϕ ∈S (Rn), then T is called a Calderón–Zygmund operator associated with
the standard kernel K. Such operators T admit a bounded extension on L2(Rn), i.e.,
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given any f in L2(Rn) one can define T ( f ) as the unique L2 limit of the Cauchy
sequence {T (ϕk)}k, where ϕk ∈S (Rn) and ϕk converges to f in L2. In this case we
keep the same notation for the L2 extension of T .

In the sequel we denote by CZO(δ ,A,B) the class of all Calderón–Zygmund
operators associated with standard kernels in SK(δ ,A) that admit L2–bounded ex-
tensions with norm at most B.

We make the point that there may be several Calderón–Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K(x,y) = 0. We investigate
connections between any two such operators in Proposition 4.1.11. Next we discuss
the important fact that once an operator T admits an extension that is L2 bounded,
then (4.1.14) holds for all f that are bounded and compactly supported whenever
the point x does not lie in its support.

Proposition 4.1.9. Let T be an element of CZO(δ ,A,B) associated with a standard
kernel K. Then for every f and ϕ bounded and compactly supported functions that
satisfy

dist (supp ϕ,supp f )> 0, (4.1.16)

then we have the (absolutely convergent) integral representation∫
Rn

T ( f )(x)ϕ(x)dx =
∫

Rn

∫
Rn

K(x,y) f (y)ϕ(x)dydx . (4.1.17)

Moreover, given any bounded function with compact support f , there is a set of
measure zero E( f ) such that x0 /∈ E( f )∪ supp f we have the (absolutely conver-
gent) integral representation

T ( f )(x0) =
∫

Rn
K(x0,y) f (y)dy . (4.1.18)

Proof. We first prove (4.1.17). Given f and ϕ bounded functions with compact
support select f j,ϕ j ∈ C ∞

0 such that ϕ j are uniformly bounded and supported in
a small neighborhood of the support of ϕ , ϕ j → ϕ in L2 and almost everywhere,
f j→ f in L2 and almost everywhere, and

dist (supp ϕ j,supp f j)≥
1
2

dist (supp ϕ,supp f ) = c > 0

for all j ∈ Z+. In view of (4.1.7), identity (4.1.17) is valid for the functions f j and
ϕ j in place of f and ϕ , i.e.,∫

Rn

∫
Rn

K(x,y) f j(y)ϕ j(x)dydx =
∫

Rn
T ( f j)(x)ϕ j(x)dx . (4.1.19)
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By the boundedness of T , it follows that T ( f j) converges to T ( f ) in L2 and thus as
j→ ∞ we have ∫

Rn
T ( f j)(x)ϕ j(x)dx→

∫
Rn

T ( f )(x)ϕ(x)dx. (4.1.20)

Now write f j(y)ϕ j(x)− f (y)ϕ(x) = ( f j(y)− f (y))ϕ j(x)+ f (y)(ϕ j(x)−ϕ(x)) and
observe that∣∣∣∣∫Rn

∫
Rn

K(x,y) f (y)(ϕ j(x)−ϕ(x))dydx
∣∣∣∣≤ Ac−n‖ f‖L1‖ϕ j−ϕ‖L1 → 0 ,

since ‖ϕ j−ϕ‖L1 ≤C‖ϕ j−ϕ‖L2 → 0 as j→ ∞, and∣∣∣∣∫Rn

∫
Rn

K(x,y)( f j(y)− f (y))ϕ j(x)dydx
∣∣∣∣≤ Ac−n‖ f j− f‖L1‖ϕ‖L1 → 0 ,

as j→ ∞. Combining these facts with (4.1.19) and (4.1.20) we obtain∫
Rn

∫
Rn

K(x,y) f j(y)ϕ j(x)dydx→
∫

Rn

∫
Rn

K(x,y) f (y)ϕ(x)dydx

as j→ ∞ and proves the validity of (4.1.17). Note that the double integral on the
right is absolutely convergent and bounded by A(2c)−n‖ f‖L1‖ϕ‖L1 .

To prove (4.1.18) we fix a compactly supported and bounded function f and we
pick f j as before. Then T ( f j) converges to T ( f ) in L2 and thus a subsequence T ( f jl )
converges pointwise on Rn \E( f ), for some measurable set E( f ) with |E( f )| = 0.
Given x0 /∈ E( f )∪ supp f we have

T ( f jl )(x0) =
∫

Rn
K(x0,y) f jl (y)dy

and letting l→ ∞ we obtain (4.1.18) since T ( f jl )(x0)→ T ( f )(x0) and∣∣∣∣∫Rn
K(x0,y) f jl (y)dy−

∫
Rn

K(x0,y) f (y)dy
∣∣∣∣≤ Ac−n‖ f jl − f‖L1 → 0 .

as l→ ∞. Thus (4.1.18) holds. �

We now define truncated kernels and operators.

Definition 4.1.10. Given a kernel K in SK(δ ,A) and ε > 0, we define the truncated
kernel

K(ε)(x,y) = K(x,y)χ|x−y|>ε .

Given a continuous linear operator T from S (Rn) to S ′(Rn) and ε > 0, we define
the truncated operator T (ε) by

T (ε)( f )(x) =
∫

Rn
K(ε)(x,y) f (y)dy


